Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
one cyclic formed by two cyclic
CrazyInMath   40
N an hour ago by HamstPan38825
Source: EGMO 2025/3
Let $ABC$ be an acute triangle. Points $B, D, E$, and $C$ lie on a line in this order and satisfy $BD = DE = EC$. Let $M$ and $N$ be the midpoints of $AD$ and $AE$, respectively. Suppose triangle $ADE$ is acute, and let $H$ be its orthocentre. Points $P$ and $Q$ lie on lines $BM$ and $CN$, respectively, such that $D, H, M,$ and $P$ are concyclic and pairwise different, and $E, H, N,$ and $Q$ are concyclic and pairwise different. Prove that $P, Q, N,$ and $M$ are concyclic.
40 replies
CrazyInMath
Apr 13, 2025
HamstPan38825
an hour ago
geometry problem
Medjl   5
N an hour ago by LeYohan
Source: Netherlands TST for IMO 2017 day 3 problem 1
A circle $\omega$ with diameter $AK$ is given. The point $M$ lies in the interior of the circle, but not on $AK$. The line $AM$ intersects $\omega$ in $A$ and $Q$. The tangent to $\omega$ at $Q$ intersects the line through $M$ perpendicular to $AK$, at $P$. The point $L$ lies on $\omega$, and is such that $PL$ is tangent to $\omega$ and $L\neq Q$.
Show that $K, L$, and $M$ are collinear.
5 replies
Medjl
Feb 1, 2018
LeYohan
an hour ago
Connected, not n-colourable graph
mavropnevma   7
N an hour ago by OutKast
Source: Tuymaada 2013, Day 1, Problem 4 Juniors and 3 Seniors
The vertices of a connected graph cannot be coloured with less than $n+1$ colours (so that adjacent vertices have different colours).
Prove that $\dfrac{n(n-1)}{2}$ edges can be removed from the graph so that it remains connected.

V. Dolnikov

EDIT. It is confirmed by the official solution that the graph is tacitly assumed to be finite.
7 replies
mavropnevma
Jul 20, 2013
OutKast
an hour ago
Homothety with incenter and circumcenters
Ikeronalio   8
N an hour ago by LeYohan
Source: Korea National Olympiad 2009 Problem 1
Let $I, O$ be the incenter and the circumcenter of triangle $ABC$, and $D,E,F$ be the circumcenters of triangle $ BIC, CIA, AIB$. Let $ P, Q, R$ be the midpoints of segments $ DI, EI, FI $. Prove that the circumcenter of triangle $PQR $, $M$, is the midpoint of segment $IO$.
8 replies
Ikeronalio
Sep 9, 2012
LeYohan
an hour ago
2-var inequality
sqing   11
N 2 hours ago by ytChen
Source: Own
Let $ a,b>0 , a^2+b^2-ab\leq 1 . $ Prove that
$$a^3+b^3 -\frac{a^4}{b+1}  -\frac{b^4}{a+1} \leq 1 $$
11 replies
sqing
May 27, 2025
ytChen
2 hours ago
Sums of products of entries in a matrix
Stear14   0
2 hours ago
(a) $\ $Each entry of an $\ 8\times 8\ $ matrix equals either $\ 1\ $ or $\ 2.\ $ Let $\ A\ $ denote the sum of eight products of entries in each row. Also, let $\ B\ $ denote the sum of eight products of entries in each column. Find the maximum possible value of $\ A-B.\ $ In other words, find
$$ {\rm max}\ \left[ \sum_{i=1}^8\ \prod_{j=1}^8\ a_{ij} - 
\sum_{j=1}^8\ \prod_{i=1}^8\ a_{ij} \right]
$$
(b) $\ $Same question, but for a $\ 2025\times 2025\ $ matrix.
0 replies
Stear14
2 hours ago
0 replies
a father and his son are skating around a circular skating rink
parmenides51   2
N 2 hours ago by thespacebar1729
Source: Tournament Of Towns Spring 1999 Junior 0 Level p1
A father and his son are skating around a circular skating rink. From time to time, the father overtakes the son. After the son starts skating in the opposite direction, they begin to meet five times more often. What is the ratio of the skating speeds of the father and the son?

(Tairova)
2 replies
parmenides51
May 7, 2020
thespacebar1729
2 hours ago
Sums of n mod k
EthanWYX2009   1
N 2 hours ago by Martin.s
Source: 2025 May 谜之竞赛-3
Given $0<\varepsilon <1.$ Show that there exists a constant $c>0,$ such that for all positive integer $n,$
\[\sum_{k\le n^{\varepsilon}}(n\text{ mod } k)>cn^{2\varepsilon}.\]Proposed by Cheng Jiang
1 reply
EthanWYX2009
May 26, 2025
Martin.s
2 hours ago
Easy P4 combi game with nt flavour
Maths_VC   1
N 5 hours ago by p.lazarov06
Source: Serbia JBMO TST 2025, Problem 4
Two players, Alice and Bob, play the following game, taking turns. In the beginning, the number $1$ is written on the board. A move consists of adding either $1$, $2$ or $3$ to the number written on the board, but only if the chosen number is coprime with the current number (for example, if the current number is $10$, then in a move a player can't choose the number $2$, but he can choose either $1$ or $3$). The player who first writes a perfect square on the board loses. Prove that one of the players has a winning strategy and determine who wins in the game.
1 reply
Maths_VC
May 27, 2025
p.lazarov06
5 hours ago
Central sequences
EeEeRUT   14
N 5 hours ago by HamstPan38825
Source: EGMO 2025 P2
An infinite increasing sequence $a_1 < a_2 < a_3 < \cdots$ of positive integers is called central if for every positive integer $n$ , the arithmetic mean of the first $a_n$ terms of the sequence is equal to $a_n$.

Show that there exists an infinite sequence $b_1, b_2, b_3, \dots$ of positive integers such that for every central sequence $a_1, a_2, a_3, \dots, $ there are infinitely many positive integers $n$ with $a_n = b_n$.
14 replies
EeEeRUT
Apr 16, 2025
HamstPan38825
5 hours ago
4th grader qual JMO
HCM2001   49
N Today at 4:05 PM by mathkiddus
i mean.. whattttt??? just found out about this.. is he on aops? (i'm sure he is) where are you orz lol..
https://www.mathschool.com/blog/results/celebrating-success-douglas-zhang-is-rsm-s-youngest-usajmo-qualifier
49 replies
HCM2001
May 22, 2025
mathkiddus
Today at 4:05 PM
AIME qual outside US?
daijobu   10
N Today at 5:23 AM by Yiyj
Can students outside the US take the AIME if they earn a qualifying score?
10 replies
daijobu
Yesterday at 7:10 PM
Yiyj
Today at 5:23 AM
[$10K+ IN PRIZES] Poolesville Math Tournament (PVMT) 2025
qwerty123456asdfgzxcvb   20
N Today at 2:13 AM by panda2018
Hi everyone!

After the resounding success of the first three years of PVMT, the Poolesville High School Math Team is excited to announce the fourth annual Poolesville High School Math Tournament (PVMT)! The PVMT team includes a MOPper and multiple USA(J)MO and AIME qualifiers!

PVMT is open to all 6th-9th graders in the country (including rising 10th graders). Students will compete in teams of up to 4 people, and each participant will take three subject tests as well as the team round. The contest is completely free, and will be held virtually on June 7, 2025, from 10:00 AM to 4:00 PM (EST).

Additionally, thanks to our sponsors, we will be awarding approximately $10K+ worth of prizes (including gift cards, Citadel merch, AoPS coupons, Wolfram licenses) to top teams and individuals. More details regarding the actual prizes will be released as we get closer to the competition date.

Further, newly for this year we might run some interesting mini-events, which we will announce closer to the competition date, such as potentially a puzzle hunt and integration bee!

If you would like to register for the competition, the registration form can be found at https://pvmt.org/register.html or https://tinyurl.com/PVMT25.

Additionally, more information about PVMT can be found at https://pvmt.org

If you have any questions not answered in the below FAQ, feel free to ask in this thread or email us at falconsdomath@gmail.com!

We look forward to your participation!

FAQ
20 replies
qwerty123456asdfgzxcvb
Apr 5, 2025
panda2018
Today at 2:13 AM
Expression is a Cube
nosaj   38
N Today at 1:42 AM by NicoN9
Source: 2015 AIME I Problem 3
There is a prime number $p$ such that $16p+1$ is the cube of a positive integer. Find $p$.
38 replies
nosaj
Mar 20, 2015
NicoN9
Today at 1:42 AM
USAMO (How do you prepare for it?)-plz,Pleas,please COMMENT
GrayPhantom   4
N Jan 5, 2011 by trigonometry456103
Hey guys,

Consdering the fact that my last post got more than 2 comments, I am going to post again. However, this time I am looking ahead. I can comfortably get a 5 on the AIME. With all of the books I have mentioned, I hope to increase this average to about 12+. I am pretty sure that I can make the USAMO next year, if I work hard all through summer. I will have done all "school math" through AP Calculus BC. I will be in my second to last year of high school, but will still technically be a sophmore. I would really like to make MOP next year. What I am wondering is how in the world do you prepare for it, so that you can produce full solutions on at least three problems on the USAMO and get partial credit on the rest. Could someone reccomend books in olympiad-level geometry, number theory, combinatorics, algebra, inequalities, and general problem solving techniques. Also, could someone give me a study plan so that I can at least be able to get 15 points on the USAMO??? I would really like to get a 25+ on the USAMO, so can someone tell me how to improve proof-skills, like making connections faster and in general writing cleaner solutions? I really appreciate it.

Yours truly,
ktz2014 (discovered to be one among many math problem solvers in TN)

BTW: TN dudes and dudets(if it applies) PM, we need to get a strong ARML team, Duke Math Meet Team, Harvard MIT Math Team, and any other contest teams. ASAP!!!!
4 replies
GrayPhantom
Jan 5, 2011
trigonometry456103
Jan 5, 2011
USAMO (How do you prepare for it?)-plz,Pleas,please COMMENT
G H J
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
GrayPhantom
190 posts
#1 • 2 Y
Y by Adventure10, Mango247
Hey guys,

Consdering the fact that my last post got more than 2 comments, I am going to post again. However, this time I am looking ahead. I can comfortably get a 5 on the AIME. With all of the books I have mentioned, I hope to increase this average to about 12+. I am pretty sure that I can make the USAMO next year, if I work hard all through summer. I will have done all "school math" through AP Calculus BC. I will be in my second to last year of high school, but will still technically be a sophmore. I would really like to make MOP next year. What I am wondering is how in the world do you prepare for it, so that you can produce full solutions on at least three problems on the USAMO and get partial credit on the rest. Could someone reccomend books in olympiad-level geometry, number theory, combinatorics, algebra, inequalities, and general problem solving techniques. Also, could someone give me a study plan so that I can at least be able to get 15 points on the USAMO??? I would really like to get a 25+ on the USAMO, so can someone tell me how to improve proof-skills, like making connections faster and in general writing cleaner solutions? I really appreciate it.

Yours truly,
ktz2014 (discovered to be one among many math problem solvers in TN)

BTW: TN dudes and dudets(if it applies) PM, we need to get a strong ARML team, Duke Math Meet Team, Harvard MIT Math Team, and any other contest teams. ASAP!!!!
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
basketball9
1012 posts
#2 • 3 Y
Y by Adventure10, Mango247, and 1 other user
I am really sorry to disappoint you but I think you should make this post when you are actually at Olympiad level math.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
fatfail
11 posts
#3 • 8 Y
Y by Adventure10, Mango247, and 6 other users
Hi. I'm not sure about this, but I think it is pretty difficult to increase your average AIME score from 2-3 to 5 by doing 6 hours of math spread over 2 days. I am very proud of your achievement! I wish you the best of luck on USAMO!
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
luie1168e
1295 posts
#4 • 3 Y
Y by Adventure10, Mango247, and 1 other user
Even you get 130 on AMC 12, you have to get 7-8 problem on each AIME to qualify USAMO because for now the index score(AMC + AIME) the perfect score is still 300(if i am right)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
trigonometry456103
349 posts
#5 • 2 Y
Y by Adventure10 and 1 other user
ktz, it is great that your AIME score increased by 2-3 points from a relatively short amount time of studying! However, understand that making the USAMO is actually a very big accomplishment(even scoring above 7 is a huge accomplishment; most people couldn't score a 2), mainly because the USAMO isn't an SATI/SATII type test, where you have specific "prep" books. All of the books you listed in your previous post are very good, but if you are scoring a 5 on the AIME(and I assume then around a 110 on the AMC12), it would be MUCH more beneficial to spend your time REALLY mastering vol1/vol2. The books you listed will be beneficial to you, but only for like the last 3 or 4 problems on the AIME and probably only for numbers 24 and 25 on the AMC12. Also, reading all those books might not benefit you the way you want them to; it also really depends on how you use them. Don't use the books just for their "key" formulas: it will not benefit you(unless the topic is very formula heavy).
Even if you don't make the USAMO, all the knowledge/skills/study habits you gained from prepping from it will help you FAR more than winning the contest(especially since you want to be a neurosurgeon).
:)
Z K Y
N Quick Reply
G
H
=
a