Stay ahead of learning milestones! Enroll in a class over the summer!

Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
USA(J)MO Statistics Out
BS2012   27
N an hour ago by Bole
Source: MAA edvistas page
https://maa.edvistas.com/eduview/report.aspx?view=1561&mode=6
who were the 2 usamo perfects
27 replies
BS2012
Yesterday at 10:07 PM
Bole
an hour ago
MOP Emails Out! (not clickbait)
Mathandski   68
N an hour ago by LawofCosine
What an emotional roller coaster the past 34 days have been.

Congrats to all that qualified!
68 replies
Mathandski
Tuesday at 8:25 PM
LawofCosine
an hour ago
have you done DCX-Russian?
GoodMorning   82
N 2 hours ago by EpicBird08
Source: 2023 USAJMO Problem 3
Consider an $n$-by-$n$ board of unit squares for some odd positive integer $n$. We say that a collection $C$ of identical dominoes is a maximal grid-aligned configuration on the board if $C$ consists of $(n^2-1)/2$ dominoes where each domino covers exactly two neighboring squares and the dominoes don't overlap: $C$ then covers all but one square on the board. We are allowed to slide (but not rotate) a domino on the board to cover the uncovered square, resulting in a new maximal grid-aligned configuration with another square uncovered. Let $k(C)$ be the number of distinct maximal grid-aligned configurations obtainable from $C$ by repeatedly sliding dominoes. Find the maximum value of $k(C)$ as a function of $n$.

Proposed by Holden Mui
82 replies
GoodMorning
Mar 23, 2023
EpicBird08
2 hours ago
2025 ELMOCOUNTS - Mock MATHCOUNTS Nationals
vincentwant   117
N 2 hours ago by aidan0626
text totally not copied over from wmc (thanks jason <3)
Quick Links:
[list=disc]
[*] National: (Sprint) (Target) (Team) (Sprint + Target Submission) (Team Submission) [/*]
[*] Miscellaneous: (Leaderboard) (Sprint + Target Private Discussion Forum) (Team Discussion Forum)[/*]
[/list]
-----
Eddison Chen (KS '22 '24), Aarush Goradia (CO '24), Ethan Imanuel (NJ '24), Benjamin Jiang (FL '23 '24), Rayoon Kim (PA '23 '24), Jason Lee (NC '23 '24), Puranjay Madupu (AZ '23 '24), Andy Mo (OH '23 '24), George Paret (FL '24), Arjun Raman (IN '24), Vincent Wang (TX '24), Channing Yang (TX '23 '24), and Jefferson Zhou (MN '23 '24) present:



[center]IMAGE[/center]

[center]Image credits to Simon Joeng.[/center]

2024 MATHCOUNTS Nationals alumni from all across the nation have come together to administer the first-ever ELMOCOUNTS Competition, a mock written by the 2024 Nationals alumni given to the 2025 Nationals participants. By providing the next generation of mathletes with free, high quality practice, we're here to boast how strong of an alumni community MATHCOUNTS has, as well as foster interest in the beautiful art that is problem writing!

The tests and their corresponding submissions forms will be released here, on this thread, on Monday, April 21, 2025. The deadline is May 10, 2025. Tests can be administered asynchronously at your home or school, and your answers should be submitted to the corresponding submission form. If you include your AoPS username in your submission, you will be granted access to the private discussion forum on AoPS, where you can discuss the tests even before the deadline.
[list=disc]
[*] "How do I know these tests are worth my time?" [/*]
[*] "Who can participate?" [/*]
[*] "How do I sign up?" [/*]
[*] "What if I have multiple students?" [/*]
[*] "What if a problem is ambiguous, incorrect, etc.?" [/*]
[*] "Will there be solutions?" [/*]
[*] "Will there be a Countdown Round administered?" [/*]
[/list]
If you have any other questions, feel free to email us at elmocounts2025@gmail.com (or PM me)!
117 replies
vincentwant
Apr 20, 2025
aidan0626
2 hours ago
Cyclic points and concurrency [1st Lemoine circle]
shobber   10
N 3 hours ago by Ilikeminecraft
Source: China TST 2005
Let $\omega$ be the circumcircle of acute triangle $ABC$. Two tangents of $\omega$ from $B$ and $C$ intersect at $P$, $AP$ and $BC$ intersect at $D$. Point $E$, $F$ are on $AC$ and $AB$ such that $DE \parallel BA$ and $DF \parallel CA$.
(1) Prove that $F,B,C,E$ are concyclic.

(2) Denote $A_{1}$ the centre of the circle passing through $F,B,C,E$. $B_{1}$, $C_{1}$ are difined similarly. Prove that $AA_{1}$, $BB_{1}$, $CC_{1}$ are concurrent.
10 replies
shobber
Jun 27, 2006
Ilikeminecraft
3 hours ago
Hard functional equation
Jessey   4
N 3 hours ago by jasperE3
Source: Belarus 2005
Find all functions $f:N -$> $N$ that satisfy $f(m-n+f(n)) = f(m)+f(n)$, for all $m, n$$N$.
4 replies
Jessey
Mar 11, 2020
jasperE3
3 hours ago
Vertices of a convex polygon if and only if m(S) = f(n)
orl   12
N 3 hours ago by Maximilian113
Source: IMO Shortlist 2000, C3
Let $ n \geq 4$ be a fixed positive integer. Given a set $ S = \{P_1, P_2, \ldots, P_n\}$ of $ n$ points in the plane such that no three are collinear and no four concyclic, let $ a_t,$ $ 1 \leq t \leq n,$ be the number of circles $ P_iP_jP_k$ that contain $ P_t$ in their interior, and let \[m(S)=a_1+a_2+\cdots + a_n.\]Prove that there exists a positive integer $ f(n),$ depending only on $ n,$ such that the points of $ S$ are the vertices of a convex polygon if and only if $ m(S) = f(n).$
12 replies
orl
Aug 10, 2008
Maximilian113
3 hours ago
Imo Shortlist Problem
Lopes   35
N 4 hours ago by Maximilian113
Source: IMO Shortlist 2000, Problem N4
Find all triplets of positive integers $ (a,m,n)$ such that $ a^m + 1 \mid (a + 1)^n$.
35 replies
Lopes
Feb 27, 2005
Maximilian113
4 hours ago
Inspired by Humberto_Filho
sqing   0
4 hours ago
Source: Own
Let $ a,b\geq 0 $ and $a + b \leq 2$. Prove that
$$\frac{a^2+1}{(( a+ b)^2+1)^2} \geq  \frac{1}{25} $$$$\frac{(a^2+1)(b^2+1)}{((a+b)^2+1)^2} \geq  \frac{4}{25} $$$$ \frac{a^2+1}{(( a+ 2b)^2+1)^2} \geq  \frac{1}{289} $$$$ \frac{a^2+1}{((2a+ b)^2+1)^2} \geq  \frac{5}{289} $$


0 replies
sqing
4 hours ago
0 replies
Inequalities
Scientist10   2
N 4 hours ago by arqady
If $x, y, z \in \mathbb{R}$, then prove that the following inequality holds:
\[
\sum_{\text{cyc}} \sqrt{1 + \left(x\sqrt{1 + y^2} + y\sqrt{1 + x^2}\right)^2} \geq \sum_{\text{cyc}} xy + 2\sum_{\text{cyc}} x
\]
2 replies
Scientist10
Yesterday at 6:36 PM
arqady
4 hours ago
$n$ with $2000$ divisors divides $2^n+1$ (IMO 2000)
Valentin Vornicu   65
N 4 hours ago by ray66
Source: IMO 2000, Problem 5, IMO Shortlist 2000, Problem N3
Does there exist a positive integer $ n$ such that $ n$ has exactly 2000 prime divisors and $ n$ divides $ 2^n + 1$?
65 replies
Valentin Vornicu
Oct 24, 2005
ray66
4 hours ago
Find the smallest of sum of elements
hlminh   0
4 hours ago
Let $S=\{1,2,...,2014\}$ and $X=\{a_1,a_2,...,a_{30}\}$ is a subset of $S$ such that if $a,b\in X,a+b\leq 2014$ then $a+b\in X.$ Find the smallest of $\dfrac{a_1+a_2+\cdots+a_{30}}{30}.$
0 replies
hlminh
4 hours ago
0 replies
Easy IMO 2023 NT
799786   133
N 4 hours ago by Maximilian113
Source: IMO 2023 P1
Determine all composite integers $n>1$ that satisfy the following property: if $d_1$, $d_2$, $\ldots$, $d_k$ are all the positive divisors of $n$ with $1 = d_1 < d_2 < \cdots < d_k = n$, then $d_i$ divides $d_{i+1} + d_{i+2}$ for every $1 \leq i \leq k - 2$.
133 replies
799786
Jul 8, 2023
Maximilian113
4 hours ago
Complicated FE
XAN4   2
N 5 hours ago by cazanova19921
Source: own
Find all solutions for the functional equation $f(xyz)+\sum_{cyc}f(\frac{yz}x)=f(x)\cdot f(y)\cdot f(z)$, in which $f$: $\mathbb R^+\rightarrow\mathbb R^+$
Note: the solution is actually quite obvious - $f(x)=x^n+\frac1{x^n}$, but the proof is important.
Note 2: it is likely that the result can be generalized into a more advanced questions, potentially involving more bash.
2 replies
XAN4
Yesterday at 11:53 AM
cazanova19921
5 hours ago
Geometry USAMO (by Jinduckey & cwein3)
Jinduckey   5
N Mar 14, 2021 by parmenides51
Hey,

cwein3 and I wrote some geometry problems over the past week and put compiled them into a mock geometry USAMO. There's 6 questions organized over 2 "days", and I think they're probably around the difficulty of a real USAMO (1/4, 2/5, 3/6). The questions can be solved casually or under olympiad conditions, whichever preferred. PM me & cwein3 the solutions, and we'll look at them and release good ones in a week or two.

Thanks to Zhero for taking the time to proofread the questions.

Day 1:
#1
#2
#3

Day 2:
#4
#5
#6
5 replies
Jinduckey
Feb 10, 2012
parmenides51
Mar 14, 2021
Geometry USAMO (by Jinduckey & cwein3)
G H J
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Jinduckey
29 posts
#1 • 19 Y
Y by sjaelee, snail2, xliu, waver123, dinoboy, pi37, NewAlbionAcademy, fermat007, AWCMABMV1, thecmd999, fractals, blasterboy, vanu1996, Super, parmenides51, Adventure10, Mango247, Rounak_iitr, and 1 other user
Hey,

cwein3 and I wrote some geometry problems over the past week and put compiled them into a mock geometry USAMO. There's 6 questions organized over 2 "days", and I think they're probably around the difficulty of a real USAMO (1/4, 2/5, 3/6). The questions can be solved casually or under olympiad conditions, whichever preferred. PM me & cwein3 the solutions, and we'll look at them and release good ones in a week or two.

Thanks to Zhero for taking the time to proofread the questions.

Day 1:
#1
#2
#3

Day 2:
#4
#5
#6
Attachments:
Geometry USAMO.pdf (90kb)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
thecmd999
2860 posts
#2 • 11 Y
Y by slian2012, TheMaskedMagician, happiface, blasterboy, Super, vanu1996, parmenides51, Adventure10, Mango247, and 2 other users
Merry Christmas :D

Solutions
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
TheMaskedMagician
2955 posts
#3 • 1 Y
Y by Adventure10
DANG. thecmd999 to pro
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
DanielL2000
985 posts
#4 • 1 Y
Y by Adventure10
TheMaskedMagician wrote:
DANG. thecmd999 to pro
Totally . I am awestruck by his awesomeness.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
TheMaskedMagician
2955 posts
#5 • 2 Y
Y by SuperJJ, Adventure10
I can't believe he solved those in one day.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
parmenides51
30630 posts
#6 • 4 Y
Y by mlgjeffdoge21, Mango247, Mango247, Mango247
posted separately in aops and collected here (also inside Aops Geo Mocks , read info here)
Quote:
1. In isoceles trapezoid $ABCD$ with bases $AB$ and $CD$, $E$ is a point on side $AB$ such that $\angle DEC = \angle DAB$. Let the circumcircles of $\triangle AED$ and $\triangle BEC$ intersect again at $F$. Let $FC$ and $FD$ intersect line $AB$ at $G$ and $H$ respectively. Let $DA$ and $CB$ meet at $J$. Prove that $HJ$ is tangent to the circumcircle of $\triangle FGJ$.
problem 1
Quote:
2. Let $ABCD$ be a cyclic quadrilateral. Let $\omega_1$ be the circle passing through $D$ and tangent to $AB$ at $A$, $\omega_2$ be the circle passing through $C$ and tangent to $AB$ at $B$, $\omega_3$ be the circle passing through $B$ and tangent to $CD$ at $C$, and $\omega_4$ be the circle passing through $A$ and tangent to $CD$ at $D$. Let $O_1, O_2, O_3, O_4$ be the centres of $\omega_1, \omega_2, \omega_3, \omega_4$ respectively. Prove that $O_1O_2O_3O_4$ is cyclic.
problem 2
Quote:
3. Circles $\omega$, $\omega_1$, and $\omega_2$ are given with $\omega_1$ externally tangent to $\omega_2$ at $Z$, and $\omega_1$ and $\omega_2$ both internally tangent to $\omega$ at $X$ and $Y$ respectively. Let $K$ be an intersection point of $\omega$ and the line passing through $Z$ that is tangent to both $\omega_1$ and $\omega_2$. Let $\ell$ be the common external tangent to $\omega_1$, $\omega_2$ at $M, N$ respectively such that $K$ is on the opposite side of $\ell$ as $Z$. Let $\ell$ intersect $XY$ at $J$, and $KJ$ intersect $\omega$ at $H$. Prove that the lines $HZ$, $XN$, and $YM$ are concurrent.
problem 3
Quote:
4. Let $\omega$ be the circumcircle of acute $\triangle ABC$ and $\omega_2$ be the circle passing through $A$ and $B$ and tangent to $BC$. Let $D$ be a point on minor arc $\widehat{AB}$ of $\omega_2$, and let $AD$ meet $BC$ at $E$. Let $BD$ hit $\omega$ at $F$, and let the line tangent to $\omega$ at $C$ hit $AF$ at $G$. If $X$ is the centre of $\omega$ and $Y$ is the centre of $\omega_2$, prove that $\triangle AXY \sim \triangle AGE$.
problem 4
Quote:
5. In $\triangle ABC$, the altitudes from $B$ and $A$ intersect at $H$ and have feet $B'$ and $A'$, respectively. $B'A'$ intersects $BA$ at $P$. $M$ is the midpoint of $BA$. Prove that the perpendicular from $P$ to $AC$ always passes through one of the intersection points of $MH$ with the circumcircle of $\triangle BA'P$.
problem 5
Quote:
6. Two circles $\omega_1$ and $\omega_2$ intersect at points $B$ and $C$. Circle $\omega_3$ is tangent to $BC$ at $A$ and $\omega_1$ at $N$, and intersects $\omega_2$ at $S$ and $T$. $NA$ intersects $ST$ and $\omega_1$ at $M$ and $Q$, respectively. $P$ is the point on $\omega_1$ diametrically opposite to $Q$. $PA$ intersects $\omega_1$ at $R$, and $RN$ passes through $BC$ at $Z$. Show that $CS$, $MZ$, and $BT$ are concurrent.
problem 6

we are awaiting for your solutions at those links
This post has been edited 5 times. Last edited by parmenides51, Mar 14, 2021, 7:13 PM
Z K Y
N Quick Reply
G
H
=
a