Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Maximum reach of splitting tokens
MathMystic33   0
9 minutes ago
Source: Macedonian Mathematical Olympiad 2025 Problem 3
On a horizontally placed number line, a pile of \( t_i > 0 \) tokens is placed on each number \( i \in \{1, 2, \ldots, s\} \). As long as at least one pile contains at least two tokens, we repeat the following procedure: we choose such a pile (say, it consists of \( k \geq 2 \) tokens), and move the top token from the selected pile \( k - 1 \) unit positions to the right along the number line. What is the largest natural number \( N \) on which a token can be placed? (Express \( N \) as a function of \( (t_i;\ i = 1, \ldots, s) \).)
0 replies
+1 w
MathMystic33
9 minutes ago
0 replies
Inequality with rational function
MathMystic33   0
11 minutes ago
Source: Macedonian Mathematical Olympiad 2025 Problem 2
Let \( n > 2 \) be an integer, \( k > 1 \) a real number, and \( x_1, x_2, \ldots, x_n \) be positive real numbers such that \( x_1 \cdot x_2 \cdots x_n = 1 \). Prove that:

\[
\frac{1 + x_1^k}{1 + x_2} + \frac{1 + x_2^k}{1 + x_3} + \cdots + \frac{1 + x_n^k}{1 + x_1} \geq n.
\]
When does equality hold?
0 replies
MathMystic33
11 minutes ago
0 replies
Circumcircle of MUV tangent to two circles at once
MathMystic33   0
13 minutes ago
Source: Macedonian Mathematical Olympiad 2025 Problem 1
Given is an acute triangle \( \triangle ABC \) with \( AB < AC \). Let \( M \) be the midpoint of side \( BC \), and let \( X \) and \( Y \) be points on segments \( BM \) and \( CM \), respectively, such that \( BX = CY \). Let \( \omega_1 \) be the circumcircle of \( \triangle ABX \), and \( \omega_2 \) the circumcircle of \( \triangle ACY \). The common tangent \( t \) to \( \omega_1 \) and \( \omega_2 \), which lies closer to point \( A \), touches \( \omega_1 \) and \( \omega_2 \) at points \( P \) and \( Q \), respectively. Let the line \( MP \) intersect \( \omega_1 \) again at \( U \), and the line \( MQ \) intersect \( \omega_2 \) again at \( V \). Prove that the circumcircle of triangle \( \triangle MUV \) is tangent to both \( \omega_1 \) and \( \omega_2 \).
0 replies
MathMystic33
13 minutes ago
0 replies
USAMO 2003 Problem 5
MithsApprentice   93
N 17 minutes ago by endless_abyss
Let $ a$, $ b$, $ c$ be positive real numbers. Prove that
\[ \dfrac{(2a + b + c)^2}{2a^2 + (b + c)^2} + \dfrac{(2b + c + a)^2}{2b^2 + (c + a)^2} + \dfrac{(2c + a + b)^2}{2c^2 + (a + b)^2} \le 8.
\]
93 replies
MithsApprentice
Sep 27, 2005
endless_abyss
17 minutes ago
I got stuck in this combinatorics
artjustinhere237   1
N 35 minutes ago by maromex
Let $S = \{1, 2, 3, \ldots, k\}$, where $k \geq 4$ is a positive integer.
Prove that there exists a subset of $S$ with exactly $k - 2$ elements such that the sum of its elements is a prime number.
1 reply
artjustinhere237
an hour ago
maromex
35 minutes ago
Solve the equation x^3y^2(2y - x) = x^2y^4-36
Eukleidis   9
N 36 minutes ago by MITDragon
Source: Greek Mathematical Olympiad 2011 - P1
Solve in integers the equation
\[{x^3}{y^2}\left( {2y - x} \right) = {x^2}{y^4} - 36\]
9 replies
Eukleidis
May 13, 2011
MITDragon
36 minutes ago
c^a + a = 2^b
Havu   2
N 40 minutes ago by dromemsilly
Find $a, b, c\in\mathbb{Z}^+$ such that $a,b,c$ coprime, $a + b = 2c$ and $c^a + a = 2^b$.
2 replies
Havu
May 10, 2025
dromemsilly
40 minutes ago
They copied their problem!
pokmui9909   11
N an hour ago by cursed_tangent1434
Source: FKMO 2025 P1
Sequence $a_1, a_2, a_3, \cdots$ satisfies the following condition.

(Condition) For all positive integer $n$, $\sum_{k=1}^{n}\frac{1}{2}\left(1 - (-1)^{\left[\frac{n}{k}\right]}\right)a_k=1$ holds.

For a positive integer $m = 1001 \cdot 2^{2025}$, compute $a_m$.
11 replies
pokmui9909
Mar 29, 2025
cursed_tangent1434
an hour ago
Trigonometric Product
Henryfamz   0
an hour ago
Compute $$\prod_{n=1}^{45}\sin(2n-1)$$
0 replies
Henryfamz
an hour ago
0 replies
Gives typical russian combinatorics vibes
Sadigly   1
N an hour ago by Sadigly
Source: Azerbaijan Senior MO 2025 P3
You are given a positive integer $n$. $n^2$ amount of people stand on coordinates $(x;y)$ where $x,y\in\{0;1;2;...;n-1\}$. Every person got a water cup and two people are considered to be neighbour if the distance between them is $1$. At the first minute, the person standing on coordinates $(0;0)$ got $1$ litres of water, and the other $n^2-1$ people's water cup is empty. Every minute, two neighbouring people are chosen that does not have the same amount of water in their water cups, and they equalize the amount of water in their water cups.

Prove that, no matter what, the person standing on the coordinates $(x;y)$ will not have more than $\frac1{x+y+1}$ litres of water.
1 reply
1 viewing
Sadigly
May 8, 2025
Sadigly
an hour ago
A problem of collinearity.
Raul_S_Baz   0
2 hours ago
Î am the author.
IMAGE
P.S: How can I verify that it is an original problem? Thanks!
0 replies
Raul_S_Baz
2 hours ago
0 replies
Inequalities
nhathhuyyp5c   2
N 2 hours ago by alexheinis
Let $x,y$ be positive reals such that $3x-2xy\leq 1$. Find $\min$ \[
M = \frac{1 - x^2}{x^2} + 2y^2 + 3x + \frac{24}{y} + 2025.
\]

2 replies
nhathhuyyp5c
2 hours ago
alexheinis
2 hours ago
Inequalities
sqing   2
N 2 hours ago by sqing
Let $ a,b>0   $ . Prove that
$$ \frac{a}{a^2+a +2b+1}+ \frac{b}{b^2+2a +b+1}  \leq  \frac{2}{5} $$$$ \frac{a}{a^2+2a +b+1}+ \frac{b}{b^2+a +2b+1}  \leq  \frac{2}{5} $$
2 replies
sqing
Today at 4:01 AM
sqing
2 hours ago
dirichlet
spiralman   1
N 3 hours ago by clarkculus
Let n be a positive integer. Consider 2n+1 distinct positive integers whose total sum is less than (n+1)(3n+1). Prove that among these 2n+1 numbers, there exist two numbers whose sum is 2n+1.
1 reply
spiralman
Yesterday at 9:36 AM
clarkculus
3 hours ago
BMT 2018 Algebra Round Problem 7
IsabeltheCat   5
N Apr 22, 2025 by P162008
Let $$h_n := \sum_{k=0}^n \binom{n}{k} \frac{2^{k+1}}{(k+1)}.$$Find $$\sum_{n=0}^\infty \frac{h_n}{n!}.$$
5 replies
IsabeltheCat
Dec 3, 2018
P162008
Apr 22, 2025
BMT 2018 Algebra Round Problem 7
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
IsabeltheCat
4242 posts
#1 • 2 Y
Y by Adventure10, Mango247
Let $$h_n := \sum_{k=0}^n \binom{n}{k} \frac{2^{k+1}}{(k+1)}.$$Find $$\sum_{n=0}^\infty \frac{h_n}{n!}.$$
This post has been edited 1 time. Last edited by IsabeltheCat, Dec 3, 2018, 11:11 PM
Reason: wrong dummy variable was used previously
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rzlng
99 posts
#2 • 3 Y
Y by Srofller, Adventure10, Mango247
sketch
@below, thanks. fixed
This post has been edited 1 time. Last edited by rzlng, Dec 3, 2018, 5:11 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
TomCalc
1635 posts
#3 • 1 Y
Y by Adventure10
IsabeltheCat wrote:
Find $$\sum_{k=0}^\infty \frac{h_n}{n!}.$$
The second sum has a wrong dummy variable and @above the answer is correct.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
NikoIsLife
9657 posts
#4 • 3 Y
Y by Adventure10, Mango247, soryn
Solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
IsabeltheCat
4242 posts
#5 • 2 Y
Y by Adventure10, Mango247
TomCalc wrote:
IsabeltheCat wrote:
Find $$\sum_{k=0}^\infty \frac{h_n}{n!}.$$
The second sum has a wrong dummy variable and @above the answer is correct.

Thanks for pointing that out. I fixed the error in the original post.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
P162008
187 posts
#6
Y by
Storage
This post has been edited 3 times. Last edited by P162008, Apr 28, 2025, 9:40 PM
Reason: Typo
Z K Y
N Quick Reply
G
H
=
a