Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
how difficult are these problems
rajukaju   0
31 minutes ago
I can solve only the first 4 problems of the last general round of the HMMT competition: https://hmmt-archive.s3.amazonaws.com/tournaments/2024/nov/gen/problems.pdf

As a prediction, would this mean I am good enough to qualify for AIME? How does the difficulty compare?

0 replies
rajukaju
31 minutes ago
0 replies
Long and wacky inequality
Royal_mhyasd   4
N 43 minutes ago by Royal_mhyasd
Source: Me
Let $x, y, z$ be positive real numbers such that $x^2 + y^2 + z^2 = 12$. Find the minimum value of the following sum :
$$\sum_{cyc}\frac{(x^3+2y)^3}{3x^2yz - 16z - 8yz + 6x^2z}$$knowing that the denominators are positive real numbers.
4 replies
Royal_mhyasd
May 12, 2025
Royal_mhyasd
43 minutes ago
Consecutive squares are floors
ICE_CNME_4   6
N an hour ago by mszew

Determine how many positive integers \( n \) have the property that both
\[
\left\lfloor \sqrt{2n - 1} \right\rfloor \quad \text{and} \quad \left\lfloor \sqrt{3n + 2} \right\rfloor
\]are consecutive perfect squares.
6 replies
ICE_CNME_4
5 hours ago
mszew
an hour ago
perpendicular diagonals criterion for a cyclic quadrilateral
parmenides51   3
N an hour ago by PEKKA
Source: Sharygin 2005 Finals 9.1
The quadrangle $ABCD$ is inscribed in a circle whose center $O$ lies inside it.
Prove that if $\angle BAO = \angle DAC$, then the diagonals of the quadrilateral are perpendicular.
3 replies
parmenides51
Aug 26, 2019
PEKKA
an hour ago
functional inequality with equality
miiirz30   3
N an hour ago by genius_007
Source: 2025 Euler Olympiad, Round 2
Find all functions \( f : \mathbb{R} \to \mathbb{R} \) such that the following two conditions hold:

1. For all real numbers $a$ and $b$ satisfying $a^2 + b^2 = 1$, We have $f(x) + f(y) \geq f(ax + by)$ for all real numbers $x, y$.

2. For all real numbers $x$ and $y$, there exist real numbers $a$ and $b$, such that $a^2 + b^2 = 1$ and $f(x) + f(y) = f(ax + by)$.

Proposed by Zaza Melikidze, Georgia
3 replies
miiirz30
Today at 10:32 AM
genius_007
an hour ago
JBMO Shortlist 2023 N6
Orestis_Lignos   4
N an hour ago by MR.1
Source: JBMO Shortlist 2023, N6
Version 1. Find all primes $p$ satisfying the following conditions:

(i) $\frac{p+1}{2}$ is a prime number.
(ii) There are at least three distinct positive integers $n$ for which $\frac{p^2+n}{p+n^2}$ is an integer.

Version 2. Let $p \neq 5$ be a prime number such that $\frac{p+1}{2}$ is also a prime. Suppose there exist positive integers $a <b$ such that $\frac{p^2+a}{p+a^2}$ and $\frac{p^2+b}{p+b^2}$ are integers. Show that $b=(a-1)^2+1$.
4 replies
Orestis_Lignos
Jun 28, 2024
MR.1
an hour ago
functional equation with exponentials
produit   7
N an hour ago by GreekIdiot
Find all solutions of the real valued functional equation:
f(\sqrt{x^2+y^2})=f(x)f(y).
Here we do not assume f is continuous
7 replies
produit
Today at 12:46 PM
GreekIdiot
an hour ago
Serbian selection contest for the IMO 2025 - P2
OgnjenTesic   7
N an hour ago by DeathIsAwe
Source: Serbian selection contest for the IMO 2025
Let $ABC$ be an acute triangle. Let $A'$ be the reflection of point $A$ over the line $BC$. Let $O$ and $H$ be the circumcenter and the orthocenter of triangle $ABC$, respectively, and let $E$ be the midpoint of segment $OH$. Let $D$ and $L$ be the points where the reflection of line $AA'$ with respect to line $OA'$ intersects the circumcircle of triangle $ABC$, where point $D$ lies on the arc $BC$ not containing $A$. If \( M \) is a point on the line \( BC \) such that \( OM \perp AD \), prove that \( \angle MAD = \angle EAL \).

Proposed by Strahinja Gvozdić
7 replies
OgnjenTesic
3 hours ago
DeathIsAwe
an hour ago
Computing functions
BBNoDollar   2
N 2 hours ago by youochange
Let $f : [0, \infty) \to [0, \infty)$, $f(x) = \dfrac{ax + b}{cx + d}$, with $a, d \in (0, \infty)$, $b, c \in [0, \infty)$. Prove that there exists $n \in \mathbb{N}^*$ such that for every $x \geq 0$
\[
f_n(x) = \frac{x}{1 + nx}, \quad \text{if and only if } f(x) = \frac{x}{1 + x}, \quad \forall x \geq 0.
\](For $n \in \mathbb{N}^*$ and $x \geq 0$, the notation $f_n(x)$ represents $\underbrace{(f \circ f \circ \dots \circ f)}_{n \text{ times}}(x)$. )
2 replies
BBNoDollar
Yesterday at 10:06 AM
youochange
2 hours ago
Serbian selection contest for the IMO 2025 - P1
OgnjenTesic   1
N 2 hours ago by grupyorum
Source: Serbian selection contest for the IMO 2025
Let \( p \geq 7 \) be a prime number and \( m \in \mathbb{N} \). Prove that
\[\left| p^m - (p - 2)! \right| > p^2.\]Proposed by Miloš Milićev
1 reply
OgnjenTesic
3 hours ago
grupyorum
2 hours ago
Serbian selection contest for the IMO 2025 - P5
OgnjenTesic   1
N 2 hours ago by math90
Source: Serbian selection contest for the IMO 2025
Determine the smallest positive real number $\alpha$ such that there exists a sequence of positive real numbers $(a_n)$, $n \in \mathbb{N}$, with the property that for every $n \in \mathbb{N}$ it holds that:
\[
        a_1 + \cdots + a_{n+1} < \alpha \cdot a_n.
    \]Proposed by Pavle Martinović
1 reply
OgnjenTesic
3 hours ago
math90
2 hours ago
Inequalities
sqing   16
N 3 hours ago by DAVROS
Let $ a,b,c\geq 0 ,a+b+c\leq 3. $ Prove that
$$a^2+b^2+c^2+ab +2ca+2bc +  abc \leq \frac{251}{27}$$$$ a^2+b^2+c^2+ab+2ca+2bc  + \frac{2}{5}abc  \leq \frac{4861}{540}$$$$ a^2+b^2+c^2+ab+2ca+2bc  + \frac{7}{20}abc  \leq \frac{2381411}{26460}$$
16 replies
sqing
Yesterday at 12:47 PM
DAVROS
3 hours ago
Monochromatic Triangle
FireBreathers   0
5 hours ago
We are given in points in a plane and we connect some of them so that 10n^2 + 1 segments are drawn. We color these segments in 2 colors. Prove that we can find a monochromatic triangle.
0 replies
FireBreathers
5 hours ago
0 replies
Inequalities
sqing   0
5 hours ago
Let $ a,b,c\geq 0 $ and $ab+bc+ca =1.$ Prove that
$$(a^2+b^2+c^2)(a+b+c-2)\ge 8abc(1-a-b-c) $$$$(a^2+b^2+c^2)(a+b+c-\frac{5}{2})\ge 2abc(1-a-b-c) $$
0 replies
sqing
5 hours ago
0 replies
Some problems
hashbrown2009   3
N Apr 20, 2025 by giangtruong13
1. Real numbers a,b,c are satisfy a+1/b = b+1/c = c+1/a =x. If a,b,c are distinct, what is the value of x?
2. If x^2+y^2=1, then what is the value of : root(x^2-2x+1) + root(xy-2x+y-2) ?
3. Find the value of the sequence 2^2 + (3^2+1) + (4^2+2) + … + (97^2+95) + (98^2+96).
4. If x^2+x-1=0, then evaluate (1-x^2-x^3-x^4-…-x^2022-x^2023)/x^2022 .
5. If triangle XYZ has 3 sides that are all whole numbers, and the perimeter of XYZ is 24, what is the probability XYZ is a right triangle?

Note: If someone can latex-ify this it would help.
3 replies
hashbrown2009
Apr 19, 2025
giangtruong13
Apr 20, 2025
Some problems
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
hashbrown2009
193 posts
#1
Y by
1. Real numbers a,b,c are satisfy a+1/b = b+1/c = c+1/a =x. If a,b,c are distinct, what is the value of x?
2. If x^2+y^2=1, then what is the value of : root(x^2-2x+1) + root(xy-2x+y-2) ?
3. Find the value of the sequence 2^2 + (3^2+1) + (4^2+2) + … + (97^2+95) + (98^2+96).
4. If x^2+x-1=0, then evaluate (1-x^2-x^3-x^4-…-x^2022-x^2023)/x^2022 .
5. If triangle XYZ has 3 sides that are all whole numbers, and the perimeter of XYZ is 24, what is the probability XYZ is a right triangle?

Note: If someone can latex-ify this it would help.
This post has been edited 1 time. Last edited by hashbrown2009, Apr 19, 2025, 11:02 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SpeedCuber7
1854 posts
#2 • 2 Y
Y by aidan0626, anduran
"jonny has 5 apples. he takes away 2. using this information, calculate the mass of the sun."
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
UberPiggy
46 posts
#3
Y by
hashbrown2009 wrote:
1. Real numbers a,b,c are satisfy a+1/b = b+1/c = c+1/a =x. If a,b,c are distinct, what is the value of x?
2. If x^2+y^2=1, then what is the value of : root(x^2-2x+1) + root(xy-2x+y-2) ?
3. Find the value of the sequence 2^2 + (3^2+1) + (4^2+2) + … + (97^2+95) + (98^2+96).
4. If x^2+x-1=0, then evaluate (1-x^2-x^3-x^4-…-x^2022-x^2023)/x^2022 .
5. If triangle XYZ has 3 sides that are all whole numbers, and the perimeter of XYZ is 24, what is the probability XYZ is a right triangle?

Note: If someone can latex-ify this it would help.

$1$. Real numbers $a$, $b$, $c$ satisfy $a+\frac{1}{b} = b+\frac{1}{c} = c+\frac{1}{a} =x$. If $a$, $b$, $c$ are distinct, what is the value of $x$?
$2$. If $x^2+y^2=1$, then what is the value of $\sqrt{x^2-2x+1}+\sqrt{xy-2x+y-2}$?
$3$. Find the value of the sequence $(2^2)+(3^2+1)+(4^2+2)+…+(97^2+95)+(98^2+96)$.
$4$. If $x^2+x-1=0$, then evaluate $\frac{1-x^2-x^3-x^4-…-x^{2022}-x^{2023}}{x^{2022}}$.
$5$. If triangle $XYZ$ has $3$ sides that are all whole numbers, and the perimeter of $\triangle XYZ$ is $24$, what is the probability $\triangle XYZ$ is a right triangle?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
giangtruong13
148 posts
#4
Y by
For P1, you can calculate the value of $abc$
Z K Y
N Quick Reply
G
H
=
a