Stay ahead of learning milestones! Enroll in a class over the summer!

Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
INMO 2007 Problem 6
Sathej   32
N an hour ago by math_genie
Source: Inequality
If $ x$, $ y$, $ z$ are positive real numbers, prove that
\[ \left(x + y + z\right)^2 \left(yz + zx + xy\right)^2 \leq 3\left(y^2 + yz + z^2\right)\left(z^2 + zx + x^2\right)\left(x^2 + xy + y^2\right) .\]
32 replies
Sathej
Feb 4, 2007
math_genie
an hour ago
Prove that the triangle is isosceles.
TUAN2k8   3
N an hour ago by TUAN2k8
Source: My book
Given acute triangle $ABC$ with two altitudes $CF$ and $BE$.Let $D$ be the point on the line $CF$ such that $DB \perp BC$.The lines $AD$ and $EF$ intersect at point $X$, and $Y$ is the point on segment $BX$ such that $CY \perp BY$.Suppose that $CF$ bisects $BE$.Prove that triangle $ACY$ is isosceles.
3 replies
TUAN2k8
3 hours ago
TUAN2k8
an hour ago
Choice of indexes in a sequence
randomusername   2
N an hour ago by EthanWYX2009
Source: Kürschák 2005, problem 1
Let $N>1$ and let $a_1,a_2,\dots,a_N$ be nonnegative reals with sum at most $500$. Prove that there exist integers $k\ge 1$ and $1=n_0<n_1<\dots<n_k=N$ such that
\[\sum_{i=1}^k n_ia_{n_{i-1}}<2005.\]
2 replies
randomusername
Jul 13, 2014
EthanWYX2009
an hour ago
Simple but hard
Lukariman   3
N an hour ago by Giant_PT
Given triangle ABC. Outside the triangle, construct rectangles ACDE and BCFG with equal areas. Let M be the midpoint of DF. Prove that CM passes through the center of the circle circumscribing triangle ABC.
3 replies
Lukariman
Today at 2:47 AM
Giant_PT
an hour ago
Ah, easy one
irregular22104   2
N an hour ago by irregular22104
Source: Own
In the number series $1,9,9,9,8,...,$ every next number (from the fifth number) is the unit number of the sum of the four numbers preceding it. Is there any cases that we get the numbers $1234$ and $5678$ in this series?
2 replies
irregular22104
Wednesday at 4:01 PM
irregular22104
an hour ago
power of a point
BekzodMarupov   1
N an hour ago by nabodorbuco2
Source: lemmas in olympiad geometry
Epsilon 1.3. Let ABC be a triangle and let D, E, F be the feet of the altitudes, with D on BC, E on CA, and F on AB. Let the parallel through D to EF meet AB at X and AC at Y. Let T be the intersection of EF with BC and let M be the midpoint of side BC. Prove that the points T, M, X, Y are concyclic.
1 reply
BekzodMarupov
Today at 5:41 AM
nabodorbuco2
an hour ago
Functional Equation!
EthanWYX2009   5
N 2 hours ago by Miquel-point
Source: 2025 TST 24
Find all functions $f:\mathbb Z\to\mathbb Z$ such that $f$ is unbounded and
\[2f(m)f(n)-f(n-m)-1\]is a perfect square for all integer $m,n.$
5 replies
EthanWYX2009
Mar 29, 2025
Miquel-point
2 hours ago
IMO Shortlist 2014 G3
hajimbrak   46
N 2 hours ago by Rayvhs
Let $\Omega$ and $O$ be the circumcircle and the circumcentre of an acute-angled triangle $ABC$ with $AB > BC$. The angle bisector of $\angle ABC$ intersects $\Omega$ at $M \ne B$. Let $\Gamma$ be the circle with diameter $BM$. The angle bisectors of $\angle AOB$ and $\angle BOC$ intersect $\Gamma$ at points $P$ and $Q,$ respectively. The point $R$ is chosen on the line $P Q$ so that $BR = MR$. Prove that $BR\parallel AC$.
(Here we always assume that an angle bisector is a ray.)

Proposed by Sergey Berlov, Russia
46 replies
1 viewing
hajimbrak
Jul 11, 2015
Rayvhs
2 hours ago
Eight-point cicle
sandu2508   15
N 2 hours ago by Mamadi
Source: Balkan MO 2010, Problem 2
Let $ABC$ be an acute triangle with orthocentre $H$, and let $M$ be the midpoint of $AC$. The point $C_1$ on $AB$ is such that $CC_1$ is an altitude of the triangle $ABC$. Let $H_1$ be the reflection of $H$ in $AB$. The orthogonal projections of $C_1$ onto the lines $AH_1$, $AC$ and $BC$ are $P$, $Q$ and $R$, respectively. Let $M_1$ be the point such that the circumcentre of triangle $PQR$ is the midpoint of the segment $MM_1$.
Prove that $M_1$ lies on the segment $BH_1$.
15 replies
sandu2508
May 4, 2010
Mamadi
2 hours ago
IMO Solution mistake
CHESSR1DER   1
N 2 hours ago by whwlqkd
Source: Mistake in IMO 1982/1 4th solution
I found a mistake in 4th solution at IMO 1982/1. It gives answer $660$ and $661$. But right answer is only $660$. Should it be reported somewhere in Aops?
1 reply
CHESSR1DER
5 hours ago
whwlqkd
2 hours ago
[CASH PRIZES] IndyINTEGIRLS Spring Math Competition
Indy_Integirls   2
N 2 hours ago by ChaitraliKA
[center]IMAGE

Greetings, AoPS! IndyINTEGIRLS will be hosting a virtual math competition on May 25,
2024 from 12 PM to 3 PM EST.
Join other woman-identifying and/or non-binary "STEMinists" in solving problems, socializing, playing games, winning prizes, and more! If you are interested in competing, please register here![/center]

----------

[center]Important Information[/center]

Eligibility: This competition is open to all woman-identifying and non-binary students in middle and high school. Non-Indiana residents and international students are welcome as well!

Format: There will be a middle school and high school division. In each separate division, there will be an individual round and a team round, where students are grouped into teams of 3-4 and collaboratively solve a set of difficult problems. There will also be a buzzer/countdown/Kahoot-style round, where students from both divisions are grouped together to compete in a MATHCOUNTS-style countdown round! There will be prizes for the top competitors in each division.

Problem Difficulty: Our amazing team of problem writers is working hard to ensure that there will be problems for problem-solvers of all levels! The middle school problems will range from MATHCOUNTS school round to AMC 10 level, while the high school problems will be for more advanced problem-solvers. The team round problems will cover various difficulty levels and are meant to be more difficult, while the countdown/buzzer/Kahoot round questions will be similar to MATHCOUNTS state to MATHCOUNTS Nationals countdown round in difficulty.

Platform: This contest will be held virtually through Zoom. All competitors are required to have their cameras turned on at all times unless they have a reason for otherwise. Proctors and volunteers will be monitoring students at all times to prevent cheating and to create a fair environment for all students.

Prizes: At this moment, prizes are TBD, and more information will be provided and attached to this post as the competition date approaches. Rest assured, IndyINTEGIRLS has historically given out very generous cash prizes, and we intend on maintaining this generosity into our Spring Competition.

Contact & Connect With Us: Follow us on Instagram @indy.integirls, join our Discord, follow us on TikTok @indy.integirls, and email us at indy@integirls.org.

---------
[center]Help Us Out

Please help us in sharing the news of this competition! Our amazing team of officers has worked very hard to provide this educational opportunity to as many students as possible, and we would appreciate it if you could help us spread the word!
2 replies
Indy_Integirls
May 11, 2025
ChaitraliKA
2 hours ago
General Number Theory
ckorr2018   0
3 hours ago
Let u and v be rational numbers for which u^3-3u^2v+v^3 and 3uv(v-u) are both integers. Prove that uv(v-u) is also an integer.
0 replies
ckorr2018
3 hours ago
0 replies
Suggestions for preparing for AMC 12
peppermint_cat   3
N 6 hours ago by Konigsberg
So, I have decided to attempt taking the AMC 12 this fall. I don't have any experience with math competitions, and I thought that here might be a good place to see if anyone who has taken the AMC 12 (or done any other math competitions) has any suggestions on what to expect, how to prepare, etc. Thank you!
3 replies
peppermint_cat
Today at 1:04 AM
Konigsberg
6 hours ago
Harmonic Mean
Happytycho   4
N Today at 4:42 AM by elizhang101412
Source: Problem #2 2016 AMC 12B
The harmonic mean of two numbers can be calculated as twice their product divided by their sum. The harmonic mean of $1$ and $2016$ is closest to which integer?

$\textbf{(A)}\ 2 \qquad
\textbf{(B)}\ 45 \qquad
\textbf{(C)}\ 504 \qquad
\textbf{(D)}\ 1008 \qquad
\textbf{(E)}\ 2015 $
4 replies
Happytycho
Feb 21, 2016
elizhang101412
Today at 4:42 AM
A lot of integer lengths: JMO #6 or USAMO Problem 4
BarbieRocks   81
N Apr 23, 2025 by lpieleanu
Let $ABC$ be a triangle with $\angle A = 90^{\circ}$. Points $D$ and $E$ lie on sides $AC$ and $AB$, respectively, such that $\angle ABD = \angle DBC$ and $\angle ACE = \angle ECB$. Segments $BD$ and $CE$ meet at $I$. Determine whether or not it is possible for segments $AB$, $AC$, $BI$, $ID$, $CI$, $IE$ to all have integer lengths.
81 replies
BarbieRocks
Apr 29, 2010
lpieleanu
Apr 23, 2025
A lot of integer lengths: JMO #6 or USAMO Problem 4
G H J
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
samrocksnature
8791 posts
#74
Y by
Taco12 wrote:
Note that $\angle BIC=135^{\circ}$. Thus, $\cos \angle BIC = -\frac{\sqrt2}{2}$. LoC on $\triangle BIC$ now gives $$BI^2+CI^2-BI\cdot CI \cdot\sqrt2 = AB^2+AC^2,$$a contradiction.

No bary?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Taco12
1757 posts
#75 • 2 Y
Y by samrocksnature, Danielzh
Taco12 wrote:
Note that $\angle BIC=135^{\circ}$. Thus, $\cos \angle BIC = -\frac{\sqrt2}{2}$. LoC on $\triangle BIC$ now gives $$BI^2+CI^2-BI\cdot CI \cdot\sqrt2 = AB^2+AC^2,$$a contradiction.

No bary?

Why am I doing this...

Apply barycentric coordinates on $\triangle ABC$. Note that $a=\sqrt{b^2+c^2}$, so $I=(b^2+c^2:b^3+bc^2:b^2c+c^3)$. Cevian parameterization stuff then gives $D=(b^2+c^2:0:b^2c+c^3), E=(b^2+c^2:b^3+bc^2:0)$. Distance formula now yields a contradiction.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mathlover_1
295 posts
#76 • 1 Y
Y by samrocksnature
Can we solve this problem by cartesian coordinates?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Infinity_Integral
306 posts
#77
Y by
Mathlover_1 wrote:
Can we solve this problem by cartesian coordinates?

Using Cartesian Coordinates when the problem has a incentre and 2 non perpendicular angle bisectors and 4 lines involving these stuff is probably not a good idea, but the messier it gets the more likely it is to be irrational.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
trk08
614 posts
#78
Y by
We can say that $I$ must be the incenter of $\triangle{ABC}$. This means that $AI$ bisects $\angle{BAC}$, so $\angle{BAI}=45^{\circ}$. If we use LoC on $\triangle{BAI}$, we find that:
\[AI^2+AB^2-2AB\cdot AI\cos{45}=BI^2.\]
Suppose that all of these lengths are integers. As $\cos{45}=\frac{\sqrt2}{2}$, $BI^2$ is irrational so $BI$ is not integer. This is a contradiction which means that not all of these side lengths can be integers.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Infinity_Integral
306 posts
#79
Y by
The cosine rule solution is really nice, but I just set all the lengths to be integer and length bash until I get sqrt2 is rational. This is a very nice Geom question.

Full proof here
https://infinityintegral.substack.com/p/usajmo-2010-contest-review
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
huashiliao2020
1292 posts
#80
Y by
just posting my scratch work with lpieleanu, oops i dont wanna do writeup but anyways the thing in diagram is sufficient to understand
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
chakrabortyahan
385 posts
#81
Y by
Let FSOC , if possible every given length is an integer . We use the fact that $ AD= \sqrt{bc-mn}$ where $AD$ is the internal angle bisector of $\Delta ABC$(with $D \in BC$) and $BD = m;CD=n$ and $b ,c$ are as usual length of the sides $AC$ and $AB$.(This can be easily proved with help of the stuart's theorem . Then these are some of the required lengths :
$$CE = \sqrt{ab-\frac{abc^2}{(a+b)^2}}$$$$ BD = \sqrt{ac-\frac{acb^2}{(a+c)^2}}$$$$BI = \frac{a+c}{a+b+c} BD $$$$ ID = \frac{b}{a+b+c} BD$$and thus if both $BI$ and $ID$ are integers then so is $BD$.So , $\frac{b}{a+b+c}$ has to be rational and so $(a+b+c)$ has to be rational and so $a$ has to be rational and as $a^2 = b^2+c^2$ so $a$ must be an integer.
Now by the property of pythagorean triplets we write $a , b , c$ in the form $g(r^2+s^2),2grs , g(r^2-s^2)$ where $r , s $ are coprime numbers with different parity .As , $CE$ is integer so $ab(a+b+c)(a+b-c)$ has to be a perfect square dividing the thing by $g^4$ will give us another perfect squarewriting in terms of $r,s$ we get $(r^2+s^2) 8r^2s^2(r+s)^2$ is perfect square and so $(r^2+s^2)2$ is a perfect square but as we have $r^2+s^2$ odd ,hence contradiction and as $CE$ is not an integer so at least one of $CI,IE$ must be a non-integer. $\blacksquare$
This post has been edited 6 times. Last edited by chakrabortyahan, Mar 21, 2024, 12:01 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
joshualiu315
2534 posts
#82
Y by
The answer is $\boxed{\text{no}}$. Notice

\[\angle BIC = \angle BAC+ \angle ACE + \angle ABD = 135^\circ.\]
Hence,

\[AB^2+AC^2=BC^2 = BI^2+CI^2+BI \cdot CI \cdot \sqrt{2},\]
a contradiction as $\sqrt{2}$ is irrational.

[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(5cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -4.794418642903586, xmax = 12.21505354692679, ymin = -1.1719411561946844, ymax = 9.147984881366593;  /* image dimensions */

 /* draw figures */
draw((0,0)--(6,0), linewidth(1)); 
draw((6,0)--(0,8), linewidth(1)); 
draw((0,8)--(0,0), linewidth(1)); 
draw((0,8)--(2.6666666666666665,0), linewidth(1)); 
draw((6,0)--(0,3), linewidth(1)); 
 /* dots and labels */
dot((0,0),dotstyle); 
label("$A$", (0.05455029479432724,0.12280971198643523), NE * labelscalefactor); 
dot((6,0),dotstyle); 
label("$B$", (6.045946469122638,0.12280971198643523), NE * labelscalefactor); 
dot((0,8),dotstyle); 
label("$C$", (0.05455029479432724,8.132494004361794), NE * labelscalefactor); 
dot((0,3),linewidth(4pt) + dotstyle); 
label("$D$", (0.05455029479432724,3.1058141631880347), NE * labelscalefactor); 
dot((2.6666666666666665,0),linewidth(4pt) + dotstyle); 
label("$E$", (2.7202138469319235,0.09742244006131523), NE * labelscalefactor); 
dot((2,2),linewidth(4pt) + dotstyle); 
label("$I$", (2.047451140916244,2.1030169221457946), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
megahertz13
3183 posts
#83
Y by
Video Solution in 3 minutes!

Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
megahertz13
3183 posts
#84
Y by
The answer is no.

Note that $$\angle{BIC}=90^\circ+\frac{\angle{A}}{2}=135^\circ.$$Law of Cosines on $\triangle{BIC}$ gives $$BI^2+CI^2+\sqrt{2}\cdot BI\cdot CI=BC^2=AB^2+AC^2\implies \sqrt{2}=\frac{AB^2+AC^2-BI^2+CI^2}{BI\cdot CI}.$$If all of these segments have integer length, the left-hand side would be irrational, while the right-hand side is rational. Therefore, it is impossible for all of these segments to have integer length.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
gladIasked
648 posts
#85
Y by
dumb ahh solution:

The answer is no.

Assume for the sake of contradiction that there exists $\triangle ABC$ such that each of the given segments has integer length. First, note that $\angle IBC + \angle ICB=45^\circ$, so $\angle BIC = \angle DIE = 135^\circ$. Therefore, $\angle BIE = \angle CID = 45^\circ$. Now, $\triangle DIC\sim \triangle IAC$ and $\triangle BIE\sim \triangle BAI$ by AA similarity. We are then able to derive the following equalities:
\begin{align*}
    \frac{BE}{BI}=\frac{BI}{AB}=\frac{EI}{AI}\\
    \frac{CD}{CI}=\frac{DI}{AI}=\frac{CI}{AC}.
\end{align*}Thus, $BE=\frac{BI^2}{AB}$, so $BE$ is rational. Analogously, $CD$, $AE$, and $AD$ are also rational. Also, $AI =\frac{EI\cdot BI}{BE}$, so $AI$ is rational. By the Angle Bisector Theorem, $\frac{BC}{CA}= \frac{BE}{AE}\implies BC=CA\cdot \frac{BE}{AE}$, so $BC$ is also rational. To finish, note that $[ABC] = \frac{bc}2$, so by $A=rs$ we have the inradius $r=\frac{bc}{a+b+c}$ is rational. However, $AI = r\sqrt 2 = \frac{bc}{a+b+c}\cdot \sqrt 2$, which is irrational, a contradiction. Therefore, no such triangle with the given conditions exists. $\blacksquare$
This post has been edited 2 times. Last edited by gladIasked, Nov 28, 2024, 9:45 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Jupiterballs
53 posts
#86
Y by
We claim that the answer is no,
We prove our claim by contradiction,

Assume that $AB,AC,IC,IB$ $\in$ $\mathbb{Z}$

Now Let $\angle ABC$ = $2\theta$

Then, $\angle DBC$ = $\theta$

And as $\angle ACB$ = $90^\circ- 2 \theta$

$\angle ECB$ = $45^\circ- \theta$

So, $\angle BIC$ = $180^\circ$ - $\angle ACB$ - $\angle ECB$ = $135^\circ$

Now, by cosine law, we get that

$IB^2 + IC^2-\sqrt{2}\cdot IB\cdot IC$ = $AB^2 + AC^2$

Which implies that if all $AB,AC,IC,IB$ $\in$ $\mathbb{Z}$, then $\sqrt{2} \in \mathbb{Z}$, which is absurd.
$\mathbb{QED}$
$\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Maximilian113
575 posts
#87
Y by
Bro, I didn't see the Cosine Law and instead I did Sine Law howw :wallbash_red:

Let $x=AB, y=AC.$ It is well-known that $\angle BIC = 90^\circ + \frac12 \angle A = 135^\circ.$ Therefore by the Sine Law and Half Angle formula $$IB = \sqrt{2} BC \sin \frac{\angle C}{2} = \sqrt{\sqrt{x^2+y^2}(\sqrt{x^2+y^2}-AC)}.$$Therefore if $\sqrt{x^2+y^2} \notin \mathbb Z,$ we have the square root of an integer minus an irrational, which clearly cannot be an integer.

Hence $AB, AC, BC$ are integers. Let $z=BC.$ Then for positive integers $m, n, k$ with $m > n,$ WLOG $x=2mn, y=m^2-n^2, z=m^2+n^2.$ Then $$\sqrt{z^2-xz}, \sqrt{z^2-yz} \in \mathbb Z.$$The first one yields $\sqrt{(m^2+n^2)(m-n)^2} \in \mathbb Z \implies \sqrt{m^2+n^2} \in \mathbb Z,$ but the second one gives $$\sqrt{(m^2+n^2)(2n^2)} \in \mathbb Z \implies \sqrt{2n^2} \in \mathbb Z,$$a contradiction. Hence the answer is no.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
lpieleanu
3001 posts
#88
Y by
Solution
Z K Y
N Quick Reply
G
H
=
a