Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Original Question #2
Siopao_Enjoyer   1
N 12 minutes ago by Siopao_Enjoyer
Let x, y, and z be positive real numbers such that:

√x + √y + √z = 17/3
1/√x + 1/√y + 1/√z = 21/4

If xyz = 16/9, one of the variables will be rational while the other two will be irrational. What is the value of that rational number?
1 reply
Siopao_Enjoyer
15 minutes ago
Siopao_Enjoyer
12 minutes ago
help me~~
Imshyso   0
24 minutes ago
Given triangle ABC inscribed in (O) with orthocenter H. Let K be the midpoint of AH. Take E,F on AC, AB so that BKE=CKF=90. Prove that E,O,F are collinear.
0 replies
+1 w
Imshyso
24 minutes ago
0 replies
[PMO17 Qualifying III.5] Roots a+2/a-2
LilKirb   1
N 27 minutes ago by pooh123
Let $\alpha$, $\beta$, and $\gamma$ be the roots of $x^3 - 4x - 8 = 0.$ Find the numerical value of the expression:
\[\frac{\alpha + 2}{\alpha - 2} + \frac{\beta + 2}{\beta - 2} + \frac{\gamma + 2}{\gamma - 2}\]
1 reply
LilKirb
2 hours ago
pooh123
27 minutes ago
2017 Mathirang Mathibay - Orals, Tier 2 Easy
elpianista227   2
N 33 minutes ago by anduran
Let $M, S, A$ be the roots of the polynomial $f(x) = 127x^3 + 1729x + 8128$. Find $(M + S)^3 + (S+ A)^3 + (A + M)^3$
2 replies
elpianista227
3 hours ago
anduran
33 minutes ago
Basic ideas in junior diophantine equations
Maths_VC   5
N 38 minutes ago by Royal_mhyasd
Source: Serbia JBMO TST 2025, Problem 3
Determine all positive integers $a, b$ and $c$ such that
$2$ $\cdot$ $10^a + 5^b = 2025^c$
5 replies
Maths_VC
May 27, 2025
Royal_mhyasd
38 minutes ago
Find values for a, b ,c
Ferum_2710   2
N 40 minutes ago by Jupiterballs
Source: Romania JBMO tst 2023 day2 p4
Let $M \geq 1$ be a real number. Determine all natural numbers $n$ for which there exist distinct natural numbers $a$, $b$, $c > M$, such that
$n = (a,b) \cdot (b,c) + (b,c) \cdot (c,a) + (c,a) \cdot (a,b)$
(where $(x,y)$ denotes the greatest common divisor of natural numbers $x$ and $y$).
2 replies
Ferum_2710
Apr 30, 2023
Jupiterballs
40 minutes ago
Center lies on circumcircle of other
Philomath_314   41
N an hour ago by Adywastaken
Source: INMO P1
In triangle $ABC$ with $CA=CB$, point $E$ lies on the circumcircle of $ABC$ such that $\angle ECB=90^{\circ}$. The line through $E$ parallel to $CB$ intersects $CA$ in $F$ and $AB$ in $G$. Prove that the center of the circumcircle of triangle $EGB$ lies on the circumcircle of triangle $ECF$.

Proposed by Prithwijit De
41 replies
Philomath_314
Jan 21, 2024
Adywastaken
an hour ago
find question
mathematical-forest   7
N an hour ago by whwlqkd
Are there any contest questions that seem simple but are actually difficult? :-D
7 replies
mathematical-forest
Thursday at 10:19 AM
whwlqkd
an hour ago
Inspired by a cool result
DoThinh2001   1
N an hour ago by arqady
Source: Old?
Let three real numbers $a,b,c\geq 0$, no two of which are $0$. Prove that:
$$\sqrt{\frac{a^2+bc}{b^2+c^2}}+\sqrt{\frac{b^2+ca}{c^2+a^2}}+\sqrt{\frac{c^2+ab}{a^2+b^2}}\geq 2+\sqrt{\frac{ab+bc+ca}{a^2+b^2+c^2}}.$$
Inspiration
1 reply
+1 w
DoThinh2001
Today at 12:08 AM
arqady
an hour ago
24th PMO, Qualifying Stage #7
elpianista227   2
N an hour ago by tapilyoca
Suppose $a, b, c$ are the roots of the polynomial $x^3 + 2x^2 + 2$. Let $f$ be the unique monic polynomial whose roots are $a^2, b^2, c^2$. Find $f(1)$.
2 replies
elpianista227
3 hours ago
tapilyoca
an hour ago
Crossing ٍٍChords
matinyousefi   1
N 2 hours ago by Trenod
Source: Iranian Combinatorics Olympiad 2020 P3
$1399$ points and some chords between them is given.
$a)$ In every step we can take two chords $RS,PQ$ with a common point other than $P,Q,R,S$ and erase exactly one of $RS,PQ$ and draw $PS,PR,QS,QR$ let $s$ be the minimum of chords after some steps. Find the maximum of $s$ over all initial positions.
$b)$ In every step we can take two chords $RS,PQ$ with a common point other than $P,Q,R,S$ and erase both of $RS,PQ$ and draw $PS,PR,QS,QR$ let $s$ be the minimum of chords after some steps. Find the maximum of $s$ over all initial positions.

Proposed by Afrouz Jabalameli, Abolfazl Asadi
1 reply
matinyousefi
Apr 24, 2020
Trenod
2 hours ago
Nice NT with powers of two
oVlad   7
N 2 hours ago by SimplisticFormulas
Source: Romania TST 2024 Day 1 P3
Let $n{}$ be a positive integer and let $a{}$ and $b{}$ be positive integers congruent to 1 modulo 4. Prove that there exists a positive integer $k{}$ such that at least one of the numbers $a^k-b$ and $b^k-a$ is divisible by $2^n.$

Cătălin Liviu Gherghe
7 replies
oVlad
Jul 31, 2024
SimplisticFormulas
2 hours ago
D,E,F are collinear.
TUAN2k8   2
N 2 hours ago by TUAN2k8
Source: Own
Help me with this:
2 replies
TUAN2k8
May 28, 2025
TUAN2k8
2 hours ago
Combinatorial identity
MehdiGolafshan   4
N 2 hours ago by watery
Let $n$ is a positive integer. Prove that
$$\sum_{k=0}^{n-1}\frac{1}{k+1}\binom{n-1}{k} = \frac{2^n-1}{n}.$$
4 replies
MehdiGolafshan
Jan 16, 2023
watery
2 hours ago
function composition with quadratics yields no real roots (Auckland MO 2024 P11)
Equinox8   2
N Mar 12, 2025 by alexheinis
It is known that for quadratic polynomials $P(x)=x^2+ax+b$ and $Q(x)=x^2+cx+d$ the equation $P(Q(x))=Q(P(x))$ does not have real roots. Prove that $b \neq d$.
2 replies
Equinox8
Mar 12, 2025
alexheinis
Mar 12, 2025
function composition with quadratics yields no real roots (Auckland MO 2024 P11)
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Equinox8
1744 posts
#1
Y by
It is known that for quadratic polynomials $P(x)=x^2+ax+b$ and $Q(x)=x^2+cx+d$ the equation $P(Q(x))=Q(P(x))$ does not have real roots. Prove that $b \neq d$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ohiorizzler1434
818 posts
#2
Y by
bruh!! It's sufficient to show that if b=d, then there could be real roots! But if we let P(x)=x^2+2x+c, Q(x)=x^2+x+c, we can do casework on the sign of c to find solutions to P(Q(x))=Q(P(x)) using intermediate value theorem.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
alexheinis
10640 posts
#4
Y by
I will write $PQ$ for the composition.
Note that $PQ(x)=x^4+2cx^3+{\rm lot}$ and that $QP(x)=x^4+2ax^3+{\rm lot}$.
Hence if $a\not=c$ then $PQ-QP$ has exact degree 3 and it has a real root, contradiction.
It follows that $a=c$. Then it is clear that $b\not=d$, otherwise we have $P=Q$ and $PQ=QP$.
Z K Y
N Quick Reply
G
H
=
a