Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
functional equation
hanzo.ei   2
N 4 hours ago by MathLuis

Find all functions \( f : \mathbb{R} \to \mathbb{R} \) satisfying the equation
\[
(f(x+y))^2= f(x^2) + f(2xf(y) + y^2), \quad \forall x, y \in \mathbb{R}.
\]
2 replies
hanzo.ei
Yesterday at 6:08 PM
MathLuis
4 hours ago
Geometry
youochange   5
N 4 hours ago by lolsamo
m:}
Let $\triangle ABC$ be a triangle inscribed in a circle, where the tangents to the circle at points $B$ and $C$ intersect at the point $P$. Let $M$ be a point on the arc $AC$ (not containing $B$) such that $M \neq A$ and $M \neq C$. Let the lines $BC$ and $AM$ intersect at point $K$. Let $P'$ be the reflection of $P$ with respect to the line $AM$. The lines $AP'$ and $PM$ intersect at point $Q$, and $PM$ intersects the circumcircle of $\triangle ABC$ again at point $N$.

Prove that the point $Q$ lies on the circumcircle of $\triangle ANK$.
5 replies
youochange
Yesterday at 11:27 AM
lolsamo
4 hours ago
Something nice
KhuongTrang   25
N 4 hours ago by KhuongTrang
Source: own
Problem. Given $a,b,c$ be non-negative real numbers such that $ab+bc+ca=1.$ Prove that

$$\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le 1+2\sqrt{a+b+c+abc}.$$
25 replies
KhuongTrang
Nov 1, 2023
KhuongTrang
4 hours ago
Two Functional Inequalities
Mathdreams   6
N 5 hours ago by Assassino9931
Source: 2025 Nepal Mock TST Day 2 Problem 2
Determine all functions $f : \mathbb{R} \rightarrow \mathbb{R}$ such that $$f(x) \le x^3$$and $$f(x + y) \le f(x) + f(y) + 3xy(x + y)$$for any real numbers $x$ and $y$.

(Miroslav Marinov, Bulgaria)
6 replies
Mathdreams
Yesterday at 1:34 PM
Assassino9931
5 hours ago
Pythagorean new journey
XAN4   2
N 5 hours ago by mathprodigy2011
Source: Inspired by sarjinius
The number $4$ is written on the blackboard. Every time, Carmela can erase the number $n$ on the black board and replace it with a new number $m$, if and only if $|n^2-m^2|$ is a perfect square. Prove or disprove that all positive integers $n\geq4$ can be written exactly once on the blackboard.
2 replies
XAN4
Yesterday at 3:41 AM
mathprodigy2011
5 hours ago
sqrt(2) and sqrt(3) differ in at least 1000 digits
Stuttgarden   2
N 5 hours ago by straight
Source: Spain MO 2025 P3
We write the decimal expressions of $\sqrt{2}$ and $\sqrt{3}$ as \[\sqrt{2}=1.a_1a_2a_3\dots\quad\quad\sqrt{3}=1.b_1b_2b_3\dots\]where each $a_i$ or $b_i$ is a digit between 0 and 9. Prove that there exist at least 1000 values of $i$ between $1$ and $10^{1000}$ such that $a_i\neq b_i$.
2 replies
Stuttgarden
Mar 31, 2025
straight
5 hours ago
combinatorics and number theory beautiful problem
Medjl   2
N 5 hours ago by mathprodigy2011
Source: Netherlands TST for BxMo 2017 problem 4
A quadruple $(a; b; c; d)$ of positive integers with $a \leq b \leq c \leq d$ is called good if we can colour each integer red, blue, green or purple, in such a way that
$i$ of each $a$ consecutive integers at least one is coloured red;
$ii$ of each $b$ consecutive integers at least one is coloured blue;
$iii$ of each $c$ consecutive integers at least one is coloured green;
$iiii$ of each $d$ consecutive integers at least one is coloured purple.
Determine all good quadruples with $a = 2.$
2 replies
Medjl
Feb 1, 2018
mathprodigy2011
5 hours ago
Squence problem
AlephG_64   1
N 5 hours ago by RagvaloD
Source: 2025 Finals Portuguese Math Olympiad P1
Francisco wrote a sequence of numbers starting with $25$. From the fourth term of the sequence onwards, each term of the sequence is the average of the previous three. Given that the first six terms of the sequence are natural numbers and that the sixth number written was $8$, what is the fifth term of the sequence?
1 reply
AlephG_64
Saturday at 1:19 PM
RagvaloD
5 hours ago
50 points in plane
pohoatza   12
N 5 hours ago by de-Kirschbaum
Source: JBMO 2007, Bulgaria, problem 3
Given are $50$ points in the plane, no three of them belonging to a same line. Each of these points is colored using one of four given colors. Prove that there is a color and at least $130$ scalene triangles with vertices of that color.
12 replies
pohoatza
Jun 28, 2007
de-Kirschbaum
5 hours ago
beautiful functional equation problem
Medjl   6
N 5 hours ago by Sadigly
Source: Netherlands TST for BxMO 2017 problem 2
Let define a function $f: \mathbb{N} \rightarrow \mathbb{Z}$ such that :
$i)$$f(p)=1$ for all prime numbers $p$.
$ii)$$f(xy)=xf(y)+yf(x)$ for all positive integers $x,y$
find the smallest $n \geq 2016$ such that $f(n)=n$
6 replies
Medjl
Feb 1, 2018
Sadigly
5 hours ago
a