Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
Two times derivable real function
Valentin Vornicu   13
N 14 minutes ago by solyaris
Source: RMO 2008, 11th Grade, Problem 3
Let $ f: \mathbb R \to \mathbb R$ be a function, two times derivable on $ \mathbb R$ for which there exist $ c\in\mathbb R$ such that
\[ \frac { f(b)-f(a) }{b-a} \neq f'(c) ,\] for all $ a\neq b \in \mathbb R$.

Prove that $ f''(c)=0$.
13 replies
Valentin Vornicu
Apr 30, 2008
solyaris
14 minutes ago
Cyclic points and concurrency [1st Lemoine circle]
shobber   10
N 2 hours ago by Ilikeminecraft
Source: China TST 2005
Let $\omega$ be the circumcircle of acute triangle $ABC$. Two tangents of $\omega$ from $B$ and $C$ intersect at $P$, $AP$ and $BC$ intersect at $D$. Point $E$, $F$ are on $AC$ and $AB$ such that $DE \parallel BA$ and $DF \parallel CA$.
(1) Prove that $F,B,C,E$ are concyclic.

(2) Denote $A_{1}$ the centre of the circle passing through $F,B,C,E$. $B_{1}$, $C_{1}$ are difined similarly. Prove that $AA_{1}$, $BB_{1}$, $CC_{1}$ are concurrent.
10 replies
shobber
Jun 27, 2006
Ilikeminecraft
2 hours ago
Hard functional equation
Jessey   4
N 3 hours ago by jasperE3
Source: Belarus 2005
Find all functions $f:N -$> $N$ that satisfy $f(m-n+f(n)) = f(m)+f(n)$, for all $m, n$$N$.
4 replies
Jessey
Mar 11, 2020
jasperE3
3 hours ago
Vertices of a convex polygon if and only if m(S) = f(n)
orl   12
N 3 hours ago by Maximilian113
Source: IMO Shortlist 2000, C3
Let $ n \geq 4$ be a fixed positive integer. Given a set $ S = \{P_1, P_2, \ldots, P_n\}$ of $ n$ points in the plane such that no three are collinear and no four concyclic, let $ a_t,$ $ 1 \leq t \leq n,$ be the number of circles $ P_iP_jP_k$ that contain $ P_t$ in their interior, and let \[m(S)=a_1+a_2+\cdots + a_n.\]Prove that there exists a positive integer $ f(n),$ depending only on $ n,$ such that the points of $ S$ are the vertices of a convex polygon if and only if $ m(S) = f(n).$
12 replies
orl
Aug 10, 2008
Maximilian113
3 hours ago
Imo Shortlist Problem
Lopes   35
N 3 hours ago by Maximilian113
Source: IMO Shortlist 2000, Problem N4
Find all triplets of positive integers $ (a,m,n)$ such that $ a^m + 1 \mid (a + 1)^n$.
35 replies
Lopes
Feb 27, 2005
Maximilian113
3 hours ago
Inspired by Humberto_Filho
sqing   0
3 hours ago
Source: Own
Let $ a,b\geq 0 $ and $a + b \leq 2$. Prove that
$$\frac{a^2+1}{(( a+ b)^2+1)^2} \geq  \frac{1}{25} $$$$\frac{(a^2+1)(b^2+1)}{((a+b)^2+1)^2} \geq  \frac{4}{25} $$$$ \frac{a^2+1}{(( a+ 2b)^2+1)^2} \geq  \frac{1}{289} $$$$ \frac{a^2+1}{((2a+ b)^2+1)^2} \geq  \frac{5}{289} $$


0 replies
sqing
3 hours ago
0 replies
Inequalities
Scientist10   2
N 3 hours ago by arqady
If $x, y, z \in \mathbb{R}$, then prove that the following inequality holds:
\[
\sum_{\text{cyc}} \sqrt{1 + \left(x\sqrt{1 + y^2} + y\sqrt{1 + x^2}\right)^2} \geq \sum_{\text{cyc}} xy + 2\sum_{\text{cyc}} x
\]
2 replies
Scientist10
Yesterday at 6:36 PM
arqady
3 hours ago
$n$ with $2000$ divisors divides $2^n+1$ (IMO 2000)
Valentin Vornicu   65
N 3 hours ago by ray66
Source: IMO 2000, Problem 5, IMO Shortlist 2000, Problem N3
Does there exist a positive integer $ n$ such that $ n$ has exactly 2000 prime divisors and $ n$ divides $ 2^n + 1$?
65 replies
Valentin Vornicu
Oct 24, 2005
ray66
3 hours ago
Find the smallest of sum of elements
hlminh   0
4 hours ago
Let $S=\{1,2,...,2014\}$ and $X=\{a_1,a_2,...,a_{30}\}$ is a subset of $S$ such that if $a,b\in X,a+b\leq 2014$ then $a+b\in X.$ Find the smallest of $\dfrac{a_1+a_2+\cdots+a_{30}}{30}.$
0 replies
hlminh
4 hours ago
0 replies
Easy IMO 2023 NT
799786   133
N 4 hours ago by Maximilian113
Source: IMO 2023 P1
Determine all composite integers $n>1$ that satisfy the following property: if $d_1$, $d_2$, $\ldots$, $d_k$ are all the positive divisors of $n$ with $1 = d_1 < d_2 < \cdots < d_k = n$, then $d_i$ divides $d_{i+1} + d_{i+2}$ for every $1 \leq i \leq k - 2$.
133 replies
799786
Jul 8, 2023
Maximilian113
4 hours ago
Complicated FE
XAN4   2
N 4 hours ago by cazanova19921
Source: own
Find all solutions for the functional equation $f(xyz)+\sum_{cyc}f(\frac{yz}x)=f(x)\cdot f(y)\cdot f(z)$, in which $f$: $\mathbb R^+\rightarrow\mathbb R^+$
Note: the solution is actually quite obvious - $f(x)=x^n+\frac1{x^n}$, but the proof is important.
Note 2: it is likely that the result can be generalized into a more advanced questions, potentially involving more bash.
2 replies
XAN4
Yesterday at 11:53 AM
cazanova19921
4 hours ago
a