Stay ahead of learning milestones! Enroll in a class over the summer!

Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
9 Did I make the right choice?
Martin2001   36
N 2 minutes ago by ethan2011
If you were in 8th grade, would you rather go to MOP or mc nats? I chose to study the former more and got in so was wondering if that was valid given that I'll never make mc nats.
36 replies
Martin2001
Apr 29, 2025
ethan2011
2 minutes ago
Jane street swag package? USA(J)MO
arfekete   42
N 3 minutes ago by ethan2011
Hey! People are starting to get their swag packages from Jane Street for qualifying for USA(J)MO, and after some initial discussion on what we got, people are getting different things. Out of curiosity, I was wondering how they decide who gets what.
Please enter the following info:

- USAMO or USAJMO
- Grade
- Score
- Award/Medal/HM
- MOP (yes or no, if yes then color)
- List of items you got in your package

I will reply with my info as an example.
42 replies
+1 w
arfekete
May 7, 2025
ethan2011
3 minutes ago
for the contest high achievers, can you share your math path?
HCM2001   9
N 41 minutes ago by orangebear
Hi all
Just wondering if any orz or high scorers on contests at young age (which are a lot of u guys lol) can share what your math path has been like?
- school math: you probably finish calculus in 5th grade or something lol then what do you do for the rest of the school? concurrent enrollment? college class? none (focus on math competitions)?
- what grade did you get honor roll or higher on AMC 8, AMC 10, AIME qual, USAJMO qual, etc?
- besides aops do you use another program to study? (like Mr Math, Alphastar, etc)?

You're all great inspirations and i appreciate the answers.. you all give me a lot of motivation for this math journey. Thanks
9 replies
+1 w
HCM2001
2 hours ago
orangebear
41 minutes ago
Coordbashing = 0?
UberPiggy   15
N an hour ago by aidensharp
Hi,

I just received my USAJMO score distribution: 000 701 (very cursed I know)

The thing is, I solved #5 (Geometry) by using Cartesian coordinates and tried to show a lot of detail in my calculations. I don't think I mislabeled the pages or anything either. I don't have the scans, but does anyone know why this might be the case? Thank you!
15 replies
UberPiggy
Apr 23, 2025
aidensharp
an hour ago
Help my diagram has too many points
MarkBcc168   29
N 2 hours ago by VideoCake
Source: IMO Shortlist 2023 G6
Let $ABC$ be an acute-angled triangle with circumcircle $\omega$. A circle $\Gamma$ is internally tangent to $\omega$ at $A$ and also tangent to $BC$ at $D$. Let $AB$ and $AC$ intersect $\Gamma$ at $P$ and $Q$ respectively. Let $M$ and $N$ be points on line $BC$ such that $B$ is the midpoint of $DM$ and $C$ is the midpoint of $DN$. Lines $MP$ and $NQ$ meet at $K$ and intersect $\Gamma$ again at $I$ and $J$ respectively. The ray $KA$ meets the circumcircle of triangle $IJK$ again at $X\neq K$.

Prove that $\angle BXP = \angle CXQ$.

Kian Moshiri, United Kingdom
29 replies
MarkBcc168
Jul 17, 2024
VideoCake
2 hours ago
A problem with series
Pena317   1
N 2 hours ago by venhancefan777
Source: P5, Mexico Center Regional Olympiad 2019
A serie of positive integers $a_{1}$,$a_{2}$,. . . ,$a_{n}$ is $auto-delimited$ if for every index $i$ that holds $1\leq i\leq n$, there exist at least $a_{i}$ terms of the serie such that they are all less or equal to $i$.
Find the maximum value of the sum $a_{1}+a_{2}+\cdot \cdot \cdot+a_{n}$, where $a_{1}$,$a_{2}$,. . . ,$a_{n}$ is an $auto-delimited$ serie.
1 reply
Pena317
Nov 28, 2019
venhancefan777
2 hours ago
IMO 2009, problem 4
ZetaX   60
N 3 hours ago by FarrukhBurzu
Let $ ABC$ be a triangle with $ AB = AC$ . The angle bisectors of $ \angle C AB$ and $ \angle AB C$ meet the sides $ B C$ and $ C A$ at $ D$ and $ E$ , respectively. Let $ K$ be the incentre of triangle $ ADC$. Suppose that $ \angle B E K = 45^\circ$ . Find all possible values of $ \angle C AB$ .

Jan Vonk, Belgium, Peter Vandendriessche, Belgium and Hojoo Lee, Korea
60 replies
ZetaX
Jul 16, 2009
FarrukhBurzu
3 hours ago
Tennis tournament with rotating courts
v_Enhance   6
N 3 hours ago by Blast_S1
Source: ELMO Shortlist 2013: Problem C10, by Ray Li
Let $N\ge2$ be a fixed positive integer. There are $2N$ people, numbered $1,2,...,2N$, participating in a tennis tournament. For any two positive integers $i,j$ with $1\le i<j\le 2N$, player $i$ has a higher skill level than player $j$. Prior to the first round, the players are paired arbitrarily and each pair is assigned a unique court among $N$ courts, numbered $1,2,...,N$.

During a round, each player plays against the other person assigned to his court (so that exactly one match takes place per court), and the player with higher skill wins the match (in other words, there are no upsets). Afterwards, for $i=2,3,...,N$, the winner of court $i$ moves to court $i-1$ and the loser of court $i$ stays on court $i$; however, the winner of court 1 stays on court 1 and the loser of court 1 moves to court $N$.

Find all positive integers $M$ such that, regardless of the initial pairing, the players $2, 3, \ldots, N+1$ all change courts immediately after the $M$th round.

Proposed by Ray Li
6 replies
v_Enhance
Jul 23, 2013
Blast_S1
3 hours ago
∑(a-b)(a-c)/(2a^2 + (b+c)^2) >= 0
Zhero   24
N 3 hours ago by RevolveWithMe101
Source: ELMO Shortlist 2010, A2
Let $a,b,c$ be positive reals. Prove that
\[ \frac{(a-b)(a-c)}{2a^2 + (b+c)^2} + \frac{(b-c)(b-a)}{2b^2 + (c+a)^2} + \frac{(c-a)(c-b)}{2c^2 + (a+b)^2} \geq 0. \]

Calvin Deng.
24 replies
Zhero
Jul 5, 2012
RevolveWithMe101
3 hours ago
i am not abel to prove or disprove
frost23   8
N 3 hours ago by frost23
Source: made on my own
sorrrrrry
8 replies
frost23
4 hours ago
frost23
3 hours ago
points on sides of a triangle, intersections, extensions, ratio of areas wanted
parmenides51   1
N 3 hours ago by FrancoGiosefAG
Source: Mexican Mathematical Olympiad 1997 OMM P5
Let $P,Q,R$ be points on the sides $BC,CA,AB$ respectively of a triangle $ABC$. Suppose that $BQ$ and $CR$ meet at $A', AP$ and $CR$ meet at $B'$, and $AP$ and $BQ$ meet at $C'$, such that $AB' = B'C', BC' =C'A'$, and $CA'= A'B'$. Compute the ratio of the area of $\triangle PQR$ to the area of $\triangle ABC$.
1 reply
parmenides51
Jul 28, 2018
FrancoGiosefAG
3 hours ago
starting with intersecting circles, line passes through midpoint wanted
parmenides51   2
N 3 hours ago by EmersonSoriano
Source: Peru Ibero TST 2014
Circles $C_1$ and $C_2$ intersect at different points $A$ and $B$. The straight lines tangents to $C_1$ that pass through $A$ and $B$ intersect at $T$. Let $M$ be a point on $C_1$ that is out of $C_2$. The $MT$ line intersects $C_1$ at $C$ again, the $MA$ line intersects again to $C_2$ in $K$ and the line $AC$ intersects again to the circumference $C_2$ in $L$. Prove that the $MC$ line passes through the midpoint of the $KL$ segment.
2 replies
parmenides51
Jul 23, 2019
EmersonSoriano
3 hours ago
An inequality
Rushil   14
N 3 hours ago by frost23
Source: Indian RMO 1994 Problem 8
If $a,b,c$ are positive real numbers such that $a+b+c = 1$, prove that \[ (1+a)(1+b)(1+c) \geq 8 (1-a)(1-b)(1-c) . \]
14 replies
Rushil
Oct 25, 2005
frost23
3 hours ago
3 var inequality
SunnyEvan   6
N 3 hours ago by JARP091
Let $ a,b,c \in R $ ,such that $ a^2+b^2+c^2=4(ab+bc+ca)$Prove that :$$ \frac{7-2\sqrt{14}}{48} \leq \frac{a^3b+b^3c+c^3a}{(a^2+b^2+c^2)^2} \leq \frac{7+2\sqrt{14}}{48} $$
6 replies
SunnyEvan
May 17, 2025
JARP091
3 hours ago
Help with math problem
Cizt6464   0
Apr 18, 2025
Source: https://math.mosolymp.ru/upload/files/2018/khamovniki/7/2017-10-07_Kombinatorika.pdf
Given six distinct points on a plane, all pairwise distances between which are different. Prove that there exists a line segment connecting two of these points which is the longest side in one triangle formed by three of the points, and the shortest side in another triangle formed by three of the points.
0 replies
Cizt6464
Apr 18, 2025
0 replies
Help with math problem
G H J
Source: https://math.mosolymp.ru/upload/files/2018/khamovniki/7/2017-10-07_Kombinatorika.pdf
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Cizt6464
1 post
#1
Y by
Given six distinct points on a plane, all pairwise distances between which are different. Prove that there exists a line segment connecting two of these points which is the longest side in one triangle formed by three of the points, and the shortest side in another triangle formed by three of the points.
Z K Y
N Quick Reply
G
H
=
a