Join our FREE webinar on May 1st to learn about managing anxiety.

Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
The product of two p-pods is a p-pod
MellowMelon   10
N an hour ago by Mathandski
Source: USA TST 2011 P3
Let $p$ be a prime. We say that a sequence of integers $\{z_n\}_{n=0}^\infty$ is a $p$-pod if for each $e \geq 0$, there is an $N \geq 0$ such that whenever $m \geq N$, $p^e$ divides the sum
\[\sum_{k=0}^m (-1)^k {m \choose k} z_k.\]
Prove that if both sequences $\{x_n\}_{n=0}^\infty$ and $\{y_n\}_{n=0}^\infty$ are $p$-pods, then the sequence $\{x_ny_n\}_{n=0}^\infty$ is a $p$-pod.
10 replies
MellowMelon
Jul 26, 2011
Mathandski
an hour ago
Nordic squares!
mathisreaI   36
N an hour ago by awesomehuman
Source: IMO 2022 Problem 6
Let $n$ be a positive integer. A Nordic square is an $n \times n$ board containing all the integers from $1$ to $n^2$ so that each cell contains exactly one number. Two different cells are considered adjacent if they share a common side. Every cell that is adjacent only to cells containing larger numbers is called a valley. An uphill path is a sequence of one or more cells such that:

(i) the first cell in the sequence is a valley,

(ii) each subsequent cell in the sequence is adjacent to the previous cell, and

(iii) the numbers written in the cells in the sequence are in increasing order.

Find, as a function of $n$, the smallest possible total number of uphill paths in a Nordic square.

Author: Nikola Petrović
36 replies
mathisreaI
Jul 13, 2022
awesomehuman
an hour ago
Monochromatic bipartite subgraphs
L567   4
N an hour ago by ihategeo_1969
Source: STEMS Mathematics 2023 Category B P6
For a positive integer $n$, let $f(n)$ denote the largest integer such that for any coloring of a $K_{n,n}$ with two colors, there exists a monochromatic subgraph of $K_{n,n}$ isomorphic to $K_{f(n), f(n)}$. Is it true that for each positive integer $m$ we can find a natural $N$ such that for any integer $n \geqslant N$, $f(n) \geqslant m$?

Proposed by Suchir
4 replies
L567
Jan 8, 2023
ihategeo_1969
an hour ago
SMT Online 2025 Certificates/Question Paper/Grading
techb   1
N an hour ago by Inaaya
It is May 1st. I have been anticipating the arrival of my results displayed in the awards ceremony in the form of a digital certificate. I have unfortunately not received anything. I have heard from other sources(AoPS, and the internet), that the certificates generally arrive at the end of the month. I would like to ask the organizers, or the coordinators of the tournament, to at least give us an ETA. I would like to further elaborate on the expedition of the release of the Question Papers and the grading. The question papers would be very helpful to the people who have taken the contest, and also to other people who would like to solve them. It would also help, as people can discuss the problems that were given in the test, and know different strategies to solve a problem they have solved. In regards to the grading, it would be a crucial piece of evidence to dispute the score shown in the awards ceremony, in case the contestant is not satisfied.
1 reply
techb
an hour ago
Inaaya
an hour ago
Tilted Students Thoroughly Splash Tiger part 2
DottedCaculator   18
N 2 hours ago by MathLuis
Source: ELMO 2024/5
In triangle $ABC$ with $AB<AC$ and $AB+AC=2BC$, let $M$ be the midpoint of $\overline{BC}$. Choose point $P$ on the extension of $\overline{BA}$ past $A$ and point $Q$ on segment $\overline{AC}$ such that $M$ lies on $\overline{PQ}$. Let $X$ be on the opposite side of $\overline{AB}$ from $C$ such that $\overline{AX} \parallel \overline{BC}$ and $AX=AP=AQ$. Let $\overline{BX}$ intersect the circumcircle of $BMQ$ again at $Y \neq B$, and let $\overline{CX}$ intersect the circumcircle of $CMP$ again at $Z \neq C$. Prove that $A$, $Y$, and $Z$ are collinear.

Tiger Zhang
18 replies
DottedCaculator
Jun 21, 2024
MathLuis
2 hours ago
Find area!
ComplexPhi   4
N 2 hours ago by TigerOnion
Let $O_1$ be a point in the exterior of the circle $\omega$ of center $O$ and radius $R$ , and let $O_1N$ , $O_1D$ be the tangent segments from $O_1$ to the circle. On the segment $O_1N$ consider the point $B$ such that $BN=R$ .Let the line from $B$ parallel to $ON$ intersect the segment $O_1D$ at $C$ . If $A$ is a point on the segment $O_1D$ other than $C$ so that $BC=BA=a$ , and if the incircle of the triangle $ABC$ has radius $r$ , then find the area of $\triangle ABC$ in terms of $a ,R ,r$.
4 replies
ComplexPhi
Feb 4, 2015
TigerOnion
2 hours ago
9 Did I make the right choice?
Martin2001   27
N 2 hours ago by ninjaforce
If you were in 8th grade, would you rather go to MOP or mc nats? I chose to study the former more and got in so was wondering if that was valid given that I'll never make mc nats.
27 replies
Martin2001
Apr 29, 2025
ninjaforce
2 hours ago
Easy integer functional equation
MarkBcc168   93
N 2 hours ago by ray66
Source: APMO 2019 P1
Let $\mathbb{Z}^+$ be the set of positive integers. Determine all functions $f : \mathbb{Z}^+\to\mathbb{Z}^+$ such that $a^2+f(a)f(b)$ is divisible by $f(a)+b$ for all positive integers $a,b$.
93 replies
MarkBcc168
Jun 11, 2019
ray66
2 hours ago
-2 belongs to S
WakeUp   3
N 2 hours ago by Burmf
Source: Baltic Way 1996 Q12
Let $S$ be a set of integers containing the numbers $0$ and $1996$. Suppose further that any integer root of any non-zero polynomial with coefficients in $S$ also belongs to $S$. Prove that $-2$ belongs to $S$.
3 replies
WakeUp
Mar 19, 2011
Burmf
2 hours ago
Short combi omg
Davdav1232   5
N 2 hours ago by fagot
Source: Israel TST 2025 test 4 p3
Let \( n \) be a positive integer. A graph on \( 2n - 1 \) vertices is given such that the size of the largest clique in the graph is \( n \). Prove that there exists a vertex that is present in every clique of size \( n\)
5 replies
Davdav1232
Feb 3, 2025
fagot
2 hours ago
Isi 2016 geometry
zizou10   22
N 2 hours ago by kamatadu
Source: ISI BSTAT 2016 #5
Prove that there exists a right angle triangle with rational sides and area $d$ if and only if $x^2,y^2$ and $z^2$ are squares of rational numbers and are in Arithmetic Progression

Here $d$ is an integer.
22 replies
zizou10
May 8, 2016
kamatadu
2 hours ago
If ab+1 is divisible by A then so is a+b
ravengsd   3
N 2 hours ago by trigadd123
Source: Romania EGMO TST 2025 Day 2, Problem 4
Find the greatest positive integer $A$ such that, for all positive integers $a$ and $b$, if $A$ divides $ab+1$, then $A$ divides $a+b$.
3 replies
ravengsd
Today at 2:02 PM
trigadd123
2 hours ago
I'm trying to find a good math comp...
ysn613   5
N 3 hours ago by MathPerson12321
Okay, so I'm in sixth grade. I have been doing AMC 8 since fourth grade, but not anything else. I was wondering what other "good" math competitions there are that I am the right age for.

I'm also looking for prep tips for math competitions, because when I (mock)ace 2000-2010 AMC 8 and then get a 19 on the real thing when I was definitely able to solve everything, I feel like what I'm doing isn't really working. Anyone got any ideas? Thanks!
5 replies
+1 w
ysn613
Yesterday at 4:12 PM
MathPerson12321
3 hours ago
2025 Math and AI 4 Girls Competition: Win Up To $1,000!!!
audio-on   64
N 6 hours ago by WhitePhoenix
Join the 2025 Math and AI 4 Girls Competition for a chance to win up to $1,000!

Hey Everyone, I'm pleased to announce the dates for the 2025 MA4G Competition are set!
Applications will open on March 22nd, 2025, and they will close on April 26th, 2025 (@ 11:59pm PST).

Applicants will have one month to fill out an application with prizes for the top 50 contestants & cash prizes for the top 20 contestants (including $1,000 for the winner!). More details below!

Eligibility:
The competition is free to enter, and open to middle school female students living in the US (5th-8th grade).
Award recipients are selected based on their aptitude, activities and aspirations in STEM.

Event dates:
Applications will open on March 22nd, 2025, and they will close on April 26th, 2025 (by 11:59pm PST)
Winners will be announced on June 28, 2025 during an online award ceremony.

Application requirements:
Complete a 12 question problem set on math and computer science/AI related topics
Write 2 short essays

Prizes:
1st place: $1,000 Cash prize
2nd place: $500 Cash prize
3rd place: $300 Cash prize
4th-10th: $100 Cash prize each
11th-20th: $50 Cash prize each
Top 50 contestants: Over $50 worth of gadgets and stationary


Many thanks to our current and past sponsors and partners: Hudson River Trading, MATHCOUNTS, Hewlett Packard Enterprise, Automation Anywhere, JP Morgan Chase, D.E. Shaw, and AI4ALL.

Math and AI 4 Girls is a nonprofit organization aiming to encourage young girls to develop an interest in math and AI by taking part in STEM competitions and activities at an early age. The organization will be hosting an inaugural Math and AI 4 Girls competition to identify talent and encourage long-term planning of academic and career goals in STEM.

Contact:
mathandAI4girls@yahoo.com

For more information on the competition:
https://www.mathandai4girls.org/math-and-ai-4-girls-competition

More information on how to register will be posted on the website. If you have any questions, please ask here!


64 replies
audio-on
Jan 26, 2025
WhitePhoenix
6 hours ago
Help with math problem
Cizt6464   0
Apr 18, 2025
Source: https://math.mosolymp.ru/upload/files/2018/khamovniki/7/2017-10-07_Kombinatorika.pdf
Given six distinct points on a plane, all pairwise distances between which are different. Prove that there exists a line segment connecting two of these points which is the longest side in one triangle formed by three of the points, and the shortest side in another triangle formed by three of the points.
0 replies
Cizt6464
Apr 18, 2025
0 replies
Help with math problem
G H J
Source: https://math.mosolymp.ru/upload/files/2018/khamovniki/7/2017-10-07_Kombinatorika.pdf
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Cizt6464
1 post
#1
Y by
Given six distinct points on a plane, all pairwise distances between which are different. Prove that there exists a line segment connecting two of these points which is the longest side in one triangle formed by three of the points, and the shortest side in another triangle formed by three of the points.
Z K Y
N Quick Reply
G
H
=
a