Y by atmchallenge, rafayaashary1, rkm0959, AstrapiGnosis, artsolver, acegikmoqsuwy2000, FRaelya, mathguy5041, Mudkipswims42, guangzhou-2015, goseahawks, flyingpurplepeopleeater, kingofgeedorah, kk108, Tatsuya, zac15SCASD, anantmudgal09, IceParrot, JasperL, thedoge, psa, ahmedAbd, daniellionyang, thing, DrMath, speck, TheOneYouWant, mathisawesome2169, skywalker1, Problem_Penetrator, claserken, Mathuzb, haha0201, Davi-8191, PiDude314, asterix_1, Happy2020, Math-Ninja, samuel, Wizard_32, Amir Hossein, ccx09, Carpemath, Lemon293, Math-wiz, Toinfinity, OlympusHero, ULTRABIG, Ultroid999OCPN, vsamc, Lcz, Spaced_Out, Quentissential, mathlete5451006, HamstPan38825, wamofan, chessgocube, megarnie, suvamkonar, asdf334, Bradygho, myh2910, rayfish, MathLuis, aqua2026, rg_ryse, sugar_rush, samrocksnature, Quidditch, rama1728, Lamboreghini, mathmax12, r00tsOfUnity, ehuseyinyigit, EpicBird08, Sedro, juicetin.kim, Adventure10, Danielzh, ohiorizzler1434, Yiyj1, LuoJi, krithikrokcs
Find the minimum possible value of
given that
,
,
,
are nonnegative real numbers such that
.
Proposed by Titu Andreescu
![\[\frac{a}{b^3+4}+\frac{b}{c^3+4}+\frac{c}{d^3+4}+\frac{d}{a^3+4}\]](http://latex.artofproblemsolving.com/4/d/2/4d21982ba412c0bb4a7985798e81bc5b01ac0e43.png)





Proposed by Titu Andreescu
This post has been edited 3 times. Last edited by djmathman, Jun 22, 2020, 5:50 AM