Join our free webinar April 22 to learn about competitive programming!

Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Titu Factoring Troll
GoodMorning   76
N 25 minutes ago by megarnie
Source: 2023 USAJMO Problem 1
Find all triples of positive integers $(x,y,z)$ that satisfy the equation
$$2(x+y+z+2xyz)^2=(2xy+2yz+2zx+1)^2+2023.$$
76 replies
GoodMorning
Mar 23, 2023
megarnie
25 minutes ago
2025 ELMOCOUNTS - Mock MATHCOUNTS Nationals
vincentwant   67
N 27 minutes ago by GarudS
text totally not copied over from wmc (thanks jason <3)
Quick Links:
[list=disc]
[*] National: (Sprint) (Target) (Team) (Sprint + Target Submission) (Team Submission) [/*]
[*] Miscellaneous: (Leaderboard) (Private Discussion Forum) [/*]
[/list]
-----
Eddison Chen (KS '22 '24), Aarush Goradia (CO '24), Ethan Imanuel (NJ '24), Benjamin Jiang (FL '23 '24), Rayoon Kim (PA '23 '24), Jason Lee (NC '23 '24), Puranjay Madupu (AZ '23 '24), Andy Mo (OH '23 '24), George Paret (FL '24), Arjun Raman (IN '24), Vincent Wang (TX '24), Channing Yang (TX '23 '24), and Jefferson Zhou (MN '23 '24) present:



[center]IMAGE[/center]

[center]Image credits to Simon Joeng.[/center]

2024 MATHCOUNTS Nationals alumni from all across the nation have come together to administer the first-ever ELMOCOUNTS Competition, a mock written by the 2024 Nationals alumni given to the 2025 Nationals participants. By providing the next generation of mathletes with free, high quality practice, we're here to boast how strong of an alumni community MATHCOUNTS has, as well as foster interest in the beautiful art that is problem writing!

The tests and their corresponding submissions forms will be released here, on this thread, on Monday, April 21, 2025. The deadline is May 10, 2025. Tests can be administered asynchronously at your home or school, and your answers should be submitted to the corresponding submission form. If you include your AoPS username in your submission, you will be granted access to the private discussion forum on AoPS, where you can discuss the tests even before the deadline.
[list=disc]
[*] "How do I know these tests are worth my time?" [/*]
[*] "Who can participate?" [/*]
[*] "How do I sign up?" [/*]
[*] "What if I have multiple students?" [/*]
[*] "What if a problem is ambiguous, incorrect, etc.?" [/*]
[*] "Will there be solutions?" [/*]
[*] "Will there be a Countdown Round administered?" [/*]
[/list]
If you have any other questions, feel free to email us at elmocounts2025@gmail.com!
67 replies
+2 w
vincentwant
Yesterday at 6:29 PM
GarudS
27 minutes ago
MOP Emails
hellohannah   70
N 36 minutes ago by blueprimes
So mop emails are probably coming tomorrow, feel free to discuss here. I'll probably post when I hear that they're out unless I'm asleep
70 replies
+7 w
hellohannah
Today at 4:59 AM
blueprimes
36 minutes ago
p^3 divides (a + b)^p - a^p - b^p
62861   49
N an hour ago by Ilikeminecraft
Source: USA January TST for IMO 2017, Problem 3
Prove that there are infinitely many triples $(a, b, p)$ of positive integers with $p$ prime, $a < p$, and $b < p$, such that $(a + b)^p - a^p - b^p$ is a multiple of $p^3$.

Noam Elkies
49 replies
62861
Feb 23, 2017
Ilikeminecraft
an hour ago
basically INAMO 2010/6
iStud   1
N an hour ago by Primeniyazidayi
Source: Monthly Contest KTOM April P1 Essay
Call $n$ kawaii if it satisfies $d(n)+\varphi(n)+1=n$ ($d(n)$ is the number of positive factors of $n$, while $\varphi(n)$ is the number of integers not more than $n$ that are relatively prime with $n$). Find all $n$ that is kawaii.
1 reply
iStud
2 hours ago
Primeniyazidayi
an hour ago
3D geometry theorem
KAME06   0
an hour ago
Let $M$ a point in the space and $G$ the centroid of a tetrahedron $ABCD$. Prove that:
$$\frac{1}{4}(AB^2+AC^2+AD^2+BC^2+BD^2+CD^2)+4MG^2=MA^2+MB^2+MC^2+MD^2$$
0 replies
KAME06
an hour ago
0 replies
Funny easy transcendental geo
qwerty123456asdfgzxcvb   1
N an hour ago by golue3120
Let $\mathcal{S}$ be a logarithmic spiral centered at the origin (ie curve satisfying for any point $X$ on it, line $OX$ makes a fixed angle with the tangent to $\mathcal{S}$ at $X$). Let $\mathcal{H}$ be a rectangular hyperbola centered at the origin, scaled such that it is tangent to the logarithmic spiral at some point.

Prove that for a point $P$ on the spiral, the polar of $P$ wrt. $\mathcal{H}$ is tangent to the spiral.
1 reply
qwerty123456asdfgzxcvb
4 hours ago
golue3120
an hour ago
domino question
kjhgyuio   0
an hour ago
........
0 replies
kjhgyuio
an hour ago
0 replies
demonic monic polynomial problem
iStud   0
2 hours ago
Source: Monthly Contest KTOM April P4 Essay
(a) Let $P(x)$ be a monic polynomial so that there exists another real coefficients $Q(x)$ that satisfy
\[P(x^2-2)=P(x)Q(x)\]Determine all complex roots that are possible from $P(x)$
(b) For arbitrary polynomial $P(x)$ that satisfies (a), determine whether $P(x)$ should have real coefficients or not.
0 replies
iStud
2 hours ago
0 replies
fun set problem
iStud   0
2 hours ago
Source: Monthly Contest KTOM April P2 Essay
Given a set $S$ with exactly 9 elements that is subset of $\{1,2,\dots,72\}$. Prove that there exist two subsets $A$ and $B$ that satisfy the following:
- $A$ and $B$ are non-empty subsets from $S$,
- the sum of all elements in each of $A$ and $B$ are equal, and
- $A\cap B$ is an empty subset.
0 replies
iStud
2 hours ago
0 replies
two tangent circles
KPBY0507   3
N 2 hours ago by Sanjana42
Source: FKMO 2021 Problem 5
The incenter and $A$-excenter of $\triangle{ABC}$ is $I$ and $O$. The foot from $A,I$ to $BC$ is $D$ and $E$. The intersection of $AD$ and $EO$ is $X$. The circumcenter of $\triangle{BXC}$ is $P$.
Show that the circumcircle of $\triangle{BPC}$ is tangent to the $A$-excircle if $X$ is on the incircle of $\triangle{ABC}$.
3 replies
KPBY0507
May 8, 2021
Sanjana42
2 hours ago
trolling geometry problem
iStud   0
2 hours ago
Source: Monthly Contest KTOM April P3 Essay
Given a cyclic quadrilateral $ABCD$ with $BC<AD$ and $CD<AB$. Lines $BC$ and $AD$ intersect at $X$, and lines $CD$ and $AB$ intersect at $Y$. Let $E,F,G,H$ be the midpoints of sides $AB,BC,CD,DA$, respectively. Let $S$ and $T$ be points on segment $EG$ and $FH$, respectively, so that $XS$ is the angle bisector of $\angle{DXA}$ and $YT$ is the angle bisector of $\angle{DYA}$. Prove that $TS$ is parallel to $BD$ if and only if $AC$ divides $ABCD$ into two triangles with equal area.
0 replies
iStud
2 hours ago
0 replies
Discuss the Stanford Math Tournament Here
Aaronjudgeisgoat   285
N 2 hours ago by mathprodigy2011
I believe discussion is allowed after yesterday at midnight, correct?
If so, I will put tentative answers on this thread.
By the way, does anyone know the answer to Geometry Problem 5? I was wondering if I got that one right
Also, if you put answers, please put it in a hide tag

Answers for the Algebra Subject Test
Estimated Algebra Cutoffs
Answers for the Geometry Subject Test
Estimated Geo Cutoffs
Answers for the Discrete Subject Test
Estimated Cutoffs for Discrete
Answers for the Team Round
Guts Answers
285 replies
Aaronjudgeisgoat
Apr 14, 2025
mathprodigy2011
2 hours ago
My hardest algebra ever created (only one solve in the contest)
mshtand1   6
N 3 hours ago by mshtand1
Source: Ukraine IMO TST P9
Find all functions \( f: (0, +\infty) \to (0, +\infty) \) for which, for all \( x, y > 0 \), the following identity holds:
\[
f(x) f(yf(x)) + y f(xy) = \frac{f\left(\frac{x}{y}\right)}{y} + \frac{f\left(\frac{y}{x}\right)}{x}
\]
Proposed by Mykhailo Shtandenko
6 replies
mshtand1
Apr 19, 2025
mshtand1
3 hours ago
How to get good at comp math
fossasor   24
N Apr 16, 2025 by Cha0s
I'm a rising ninth grader who wasn't in the school math league this year, and basically put aside comp math for a year. Unfortunately, that means that now that I'm in high school and having the epiphany about how important comp math actually is, and how much it would help my chances of getting involved in other math-related programs. In addition, I do enjoy math in general, and suspect that things like the AMCs are probably going to be some of the best practice I can get. What this all means is that I'm trying to go from mediocre to orz, 2 years after I probably should have started if I wanted to be any good.

So my question is: how do I get good at comp math?

This year, my scores on AMC 10 (and these are the highest I've ever gotten) were a 73.5 and an 82.5 (AMC 8 was 21/25, but that doesn't matter much). This is not good enough to qualify for AIME, and I probably need to raise my performance on each by at least 10 points. I've been decently good in the past at Number Theory, but I need to work on Geo and Combinatorics, and I'm trying to find the best resources to do that. My biggest flaw is probably not knowing many algorithms like Stars and Bars, and the path is clear here (learn them) but I'm still not sure which ones I need to know.

I'm aware that some of this advice is going to be something like "Practice 5 hours a day and start hardgrinding" or something along those lines. Unfortunately, I have other extracurriculars I need to balance, and for me, time is a limiting resource. My parents are somewhat frowning upon me doing a lot of comp math, which limits my time as well. I have neither the time nor motivation to do more than an hour a day, and in practice, I don't think I can be doing that consistently. As such, I would need to make that time count.

I know this is a very general question, and that aops is chock-full of detailed advice for math competitions. However, I'd appreciate it if anyone here could help me out, or show me the best resources I should use to get started. What mocks are any good, or what textbooks should I use? Where do I get the best practice with the shortest time? Is there some place I can find a list of useful formulas that have appeared in math comps before?

All advice is welcome!

24 replies
fossasor
Apr 10, 2025
Cha0s
Apr 16, 2025
How to get good at comp math
G H J
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
fossasor
587 posts
#1 • 6 Y
Y by LostInBali, Pengu14, aidan0626, Alex-131, Aaron_Q, pi-ay
I'm a rising ninth grader who wasn't in the school math league this year, and basically put aside comp math for a year. Unfortunately, that means that now that I'm in high school and having the epiphany about how important comp math actually is, and how much it would help my chances of getting involved in other math-related programs. In addition, I do enjoy math in general, and suspect that things like the AMCs are probably going to be some of the best practice I can get. What this all means is that I'm trying to go from mediocre to orz, 2 years after I probably should have started if I wanted to be any good.

So my question is: how do I get good at comp math?

This year, my scores on AMC 10 (and these are the highest I've ever gotten) were a 73.5 and an 82.5 (AMC 8 was 21/25, but that doesn't matter much). This is not good enough to qualify for AIME, and I probably need to raise my performance on each by at least 10 points. I've been decently good in the past at Number Theory, but I need to work on Geo and Combinatorics, and I'm trying to find the best resources to do that. My biggest flaw is probably not knowing many algorithms like Stars and Bars, and the path is clear here (learn them) but I'm still not sure which ones I need to know.

I'm aware that some of this advice is going to be something like "Practice 5 hours a day and start hardgrinding" or something along those lines. Unfortunately, I have other extracurriculars I need to balance, and for me, time is a limiting resource. My parents are somewhat frowning upon me doing a lot of comp math, which limits my time as well. I have neither the time nor motivation to do more than an hour a day, and in practice, I don't think I can be doing that consistently. As such, I would need to make that time count.

I know this is a very general question, and that aops is chock-full of detailed advice for math competitions. However, I'd appreciate it if anyone here could help me out, or show me the best resources I should use to get started. What mocks are any good, or what textbooks should I use? Where do I get the best practice with the shortest time? Is there some place I can find a list of useful formulas that have appeared in math comps before?

All advice is welcome!
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathkidAP
40 posts
#2
Y by
as a person who is in effectively the exact same situation, i will grind mathdash when i can and finish vol 1 and the intro series. that probably could work for u but try to find a balance.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Andyluo
929 posts
#3
Y by
I was in a similar situation to you in 7th grade, though probably a lot more time. (I went from 81-135 or 46.5 to 135 since it sounds more impressive)

Take advantage of the summer, Mathdash is good (or even premium) and could be very helpful, especially since it helps you learn many simple "tricks".

Alcumus and the AOPS library are also useful for many small tricks and rigorous practicing on the AOPS mock contest forum.

https://artofproblemsolving.com/community/c594864t179f594864h3441744_77_amc_10_41_amc_12_and_other_mocks_compiled_in_google_drive_folder (GOLDMINE)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
programjames1
3046 posts
#4
Y by
Yufei Zhao (the MIT professor that runs their Putnam seminar) has some book recommendations here:
Yufei Zhao wrote:
Book recommendations
Here are some of my book recommendations for preparing for math competitions, in roughly increasing levels of difficulty.

Introductory
  • Lehoczky and Rusczyk, The Art of Problem Solving, Volume 1: the Basics
  • Lehoczky and Rusczyk, The Art of Problem Solving, Volume 2: and Beyond
  • Zeitz, The Art and Craft of Problem Solving

Advanced
  • Engel, Problem Solving Strategies
  • Andreescu and Enescu, Mathematical Olympiad Treasures
  • Andreescu and Gelca, Mathematical Olympiad Challenges
  • Andreescu and Dospinescu, Problems from the Book
  • Andreescu and Dospinescu, Straight from the Book
  • Djukić et al., The IMO Compendium (complete collection of IMO shortlist problems)

I would also recommend Andreescu and Gelca, Putnam and Beyond.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
fossasor
587 posts
#5
Y by
Thank you for the advice! I've just made a mathdash account, I'm gonna get started with that.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
fossasor
587 posts
#6
Y by
programjames1 wrote:
Yufei Zhao (the MIT professor that runs their Putnam seminar) has some book recommendations here:
Yufei Zhao wrote:
Book recommendations
Here are some of my book recommendations for preparing for math competitions, in roughly increasing levels of difficulty.

Introductory
  • Lehoczky and Rusczyk, The Art of Problem Solving, Volume 1: the Basics
  • Lehoczky and Rusczyk, The Art of Problem Solving, Volume 2: and Beyond
  • Zeitz, The Art and Craft of Problem Solving

Advanced
  • Engel, Problem Solving Strategies
  • Andreescu and Enescu, Mathematical Olympiad Treasures
  • Andreescu and Gelca, Mathematical Olympiad Challenges
  • Andreescu and Dospinescu, Problems from the Book
  • Andreescu and Dospinescu, Straight from the Book
  • Djukić et al., The IMO Compendium (complete collection of IMO shortlist problems)

I would also recommend Andreescu and Gelca, Putnam and Beyond.

This looks useful. Right now, my immediate goal is making AIME: which ones would you say would be best to use for that?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Pengu14
549 posts
#7
Y by
fossasor wrote:
programjames1 wrote:
Yufei Zhao (the MIT professor that runs their Putnam seminar) has some book recommendations here:
Yufei Zhao wrote:
Book recommendations
Here are some of my book recommendations for preparing for math competitions, in roughly increasing levels of difficulty.

Introductory
  • Lehoczky and Rusczyk, The Art of Problem Solving, Volume 1: the Basics
  • Lehoczky and Rusczyk, The Art of Problem Solving, Volume 2: and Beyond
  • Zeitz, The Art and Craft of Problem Solving

Advanced
  • Engel, Problem Solving Strategies
  • Andreescu and Enescu, Mathematical Olympiad Treasures
  • Andreescu and Gelca, Mathematical Olympiad Challenges
  • Andreescu and Dospinescu, Problems from the Book
  • Andreescu and Dospinescu, Straight from the Book
  • Djukić et al., The IMO Compendium (complete collection of IMO shortlist problems)

I would also recommend Andreescu and Gelca, Putnam and Beyond.

This looks useful. Right now, my immediate goal is making AIME: which ones would you say would be best to use for that?

Volume 1 along with a ton of past tests and mocks should suffice.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
wittyellie
248 posts
#8
Y by
heeeyyyy im at the same situation here :blush:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
fossasor
587 posts
#9
Y by
wittyellie wrote:
heeeyyyy im at the same situation here :blush:

apparently this is more common than I thought lol

Currently working on some Mock AMC10s (untimed since it's late at night for me and I need to go to bed soon)

Thank you to everyone for your advice!
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Inaaya
291 posts
#10
Y by
BRO IM IN THE SAME SITUATION EXCEPT I GOT 16 ON THE AMC 8 AND WAS TOO DUMB TO BE ALLOWED TO TAKE AMC 10
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
fossasor
587 posts
#11
Y by
Inaaya wrote:
BRO IM IN THE SAME SITUATION EXCEPT I GOT 16 ON THE AMC 8 AND WAS TOO DUMB TO BE ALLOWED TO TAKE AMC 10

we should start a club lol
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
NoSignOfTheta
1714 posts
#12
Y by
Inaaya wrote:
BRO IM IN THE SAME SITUATION EXCEPT I GOT 16 ON THE AMC 8 AND WAS TOO DUMB TO BE ALLOWED TO TAKE AMC 10

You... didn't qualify for the AMC 10?
This post has been edited 1 time. Last edited by NoSignOfTheta, Apr 10, 2025, 1:34 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Inaaya
291 posts
#13
Y by
NoSignOfTheta wrote:
Inaaya wrote:
BRO IM IN THE SAME SITUATION EXCEPT I GOT 16 ON THE AMC 8 AND WAS TOO DUMB TO BE ALLOWED TO TAKE AMC 10

You... didn't qualify for the AMC 10?

yeah you can put it that way
we cannot take the amc 10 at our middle school so we contacted another testing center which flat out said that i needed to take extracurricular classes there to even be able to register
also my dad just straight up said im too stupid lol
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Runner1600
12 posts
#14
Y by
Inaaya wrote:
NoSignOfTheta wrote:
Inaaya wrote:
BRO IM IN THE SAME SITUATION EXCEPT I GOT 16 ON THE AMC 8 AND WAS TOO DUMB TO BE ALLOWED TO TAKE AMC 10

You... didn't qualify for the AMC 10?

yeah you can put it that way
we cannot take the amc 10 at our middle school so we contacted another testing center which flat out said that i needed to take extracurricular classes there to even be able to register
also my dad just straight up said im too stupid lol


I'm pretty sure that the high school in your district will offer the AMC 10 or 12. Or even a university near you, that is what I did.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Inaaya
291 posts
#15
Y by
Runner1600 wrote:
I'm pretty sure that the high school in your district will offer the AMC 10 or 12. Or even a university near you, that is what I did.
No, my high school wouldn't let me take it there unless i was a student at the high school
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Pengu14
549 posts
#16
Y by
Inaaya wrote:
BRO IM IN THE SAME SITUATION EXCEPT I GOT 16 ON THE AMC 8 AND WAS TOO DUMB TO BE ALLOWED TO TAKE AMC 10

This was me two years ago
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
pingpongmerrily
3567 posts
#17
Y by
Inaaya wrote:
Runner1600 wrote:
I'm pretty sure that the high school in your district will offer the AMC 10 or 12. Or even a university near you, that is what I did.
No, my high school wouldn't let me take it there unless i was a student at the high school

if you're near an RSM you could try taking it there
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Runner1600
12 posts
#19
Y by
Inaaya wrote:
Runner1600 wrote:
I'm pretty sure that the high school in your district will offer the AMC 10 or 12. Or even a university near you, that is what I did.
No, my high school wouldn't let me take it there unless i was a student at the high school

Or you can take it at UCLA
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Inaaya
291 posts
#20
Y by
pingpongmerrily wrote:
Inaaya wrote:
Runner1600 wrote:
I'm pretty sure that the high school in your district will offer the AMC 10 or 12. Or even a university near you, that is what I did.
No, my high school wouldn't let me take it there unless i was a student at the high school

if you're near an RSM you could try taking it there

theres a weird rundown building called ICAE where apparently all the smart kids in MI take classes and comps and stuff, but i think you need a membership to even participate in anything there
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
gamerlegend
2 posts
#21
Y by
solve more problem!
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathkidAP
40 posts
#22
Y by
fossasor wrote:
Inaaya wrote:
BRO IM IN THE SAME SITUATION EXCEPT I GOT 16 ON THE AMC 8 AND WAS TOO DUMB TO BE ALLOWED TO TAKE AMC 10

we should start a club lol
call it the mediocre mid middle schoolers or smth
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
N3bula
261 posts
#23
Y by
programjames1 wrote:
Yufei Zhao (the MIT professor that runs their Putnam seminar) has some book recommendations here:
Yufei Zhao wrote:
Book recommendations
Here are some of my book recommendations for preparing for math competitions, in roughly increasing levels of difficulty.

Introductory
  • Lehoczky and Rusczyk, The Art of Problem Solving, Volume 1: the Basics
  • Lehoczky and Rusczyk, The Art of Problem Solving, Volume 2: and Beyond
  • Zeitz, The Art and Craft of Problem Solving

Advanced
  • Engel, Problem Solving Strategies
  • Andreescu and Enescu, Mathematical Olympiad Treasures
  • Andreescu and Gelca, Mathematical Olympiad Challenges
  • Andreescu and Dospinescu, Problems from the Book
  • Andreescu and Dospinescu, Straight from the Book
  • Djukić et al., The IMO Compendium (complete collection of IMO shortlist problems)

I would also recommend Andreescu and Gelca, Putnam and Beyond.
Although these are good books they are all proof based, too hard and overall pointless at this stage
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
akliu
1793 posts
#24
Y by
For qualifying for AIME specifically, I recommend looking at the Mock AMC page on the AoPSwiki and using the tests there for practice. Yes, these tests will probably vary a ton in difficulty and include some low quality problems, but I generally found them helpful for timing and improving my performance as a whole. I used past years' AMC tests sparingly; they're the actual stuff and you can only really mock a test once.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
fossasor
587 posts
#25
Y by
Now actively using my mathdash account.

Did an AMC10 and got all 5 problems right, but those are generally a bad indicator, so I'm going to start taking so bigger mocks later this week.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Cha0s
2 posts
#26
Y by
goodluck man, im in a similar boat
my amc 8 scores was 14 and 15 and my amc 10 score was like. 50
however both were on a whim, meaning i 1. didnt study and 2. had no idea what to expect
going into my sophomore year I am trying to grind super hard to catch up haha, flipping through the textbooks rn and taking notes + mathdash + mocks, basically doing what y'all are doing :)
Z K Y
N Quick Reply
G
H
=
a