ka June Highlights and 2025 AoPS Online Class Information
jlacosta0
6 hours ago
Congratulations to all the mathletes who competed at National MATHCOUNTS! If you missed the exciting Countdown Round, you can watch the video at this link. Are you interested in training for MATHCOUNTS or AMC 10 contests? How would you like to train for these math competitions in half the time? We have accelerated sections which meet twice per week instead of once starting on July 8th (7:30pm ET). These sections fill quickly so enroll today!
Summer camps are starting this month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have a transformative summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!
Be sure to mark your calendars for the following upcoming events:
[list][*]June 5th, Thursday, 7:30pm ET: Open Discussion with Ben Kornell and Andrew Sutherland, Art of Problem Solving's incoming CEO Ben Kornell and CPO Andrew Sutherland host an Ask Me Anything-style chat. Come ask your questions and get to know our incoming CEO & CPO!
[*]June 9th, Monday, 7:30pm ET, Game Jam: Operation Shuffle!, Come join us to play our second round of Operation Shuffle! If you enjoy number sense, logic, and a healthy dose of luck, this is the game for you. No specific math background is required; all are welcome.[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.
Prealgebra 1
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29
Sunday, Aug 17 - Dec 14
Tuesday, Aug 26 - Dec 16
Friday, Sep 5 - Jan 16
Monday, Sep 8 - Jan 12
Tuesday, Sep 16 - Jan 20 (4:30 - 5:45 pm ET/1:30 - 2:45 pm PT)
Sunday, Sep 21 - Jan 25
Thursday, Sep 25 - Jan 29
Wednesday, Oct 22 - Feb 25
Tuesday, Nov 4 - Mar 10
Friday, Dec 12 - Apr 10
Prealgebra 2
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21
Sunday, Aug 17 - Dec 14
Tuesday, Sep 9 - Jan 13
Thursday, Sep 25 - Jan 29
Sunday, Oct 19 - Feb 22
Monday, Oct 27 - Mar 2
Wednesday, Nov 12 - Mar 18
Introduction to Algebra A
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28
Sunday, Aug 17 - Dec 14
Wednesday, Aug 27 - Dec 17
Friday, Sep 5 - Jan 16
Thursday, Sep 11 - Jan 15
Sunday, Sep 28 - Feb 1
Monday, Oct 6 - Feb 9
Tuesday, Oct 21 - Feb 24
Sunday, Nov 9 - Mar 15
Friday, Dec 5 - Apr 3
Introduction to Counting & Probability
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 2 - Sep 17
Sunday, Jul 27 - Oct 19
Monday, Aug 11 - Nov 3
Wednesday, Sep 3 - Nov 19
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Friday, Oct 3 - Jan 16
Tuesday, Nov 4 - Feb 10
Sunday, Dec 7 - Mar 8
Introduction to Number Theory
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30
Wednesday, Aug 13 - Oct 29
Friday, Sep 12 - Dec 12
Sunday, Oct 26 - Feb 1
Monday, Dec 1 - Mar 2
Introduction to Algebra B
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14
Thursday, Aug 7 - Nov 20
Monday, Aug 18 - Dec 15
Sunday, Sep 7 - Jan 11
Thursday, Sep 11 - Jan 15
Wednesday, Sep 24 - Jan 28
Sunday, Oct 26 - Mar 1
Tuesday, Nov 4 - Mar 10
Monday, Dec 1 - Mar 30
Introduction to Geometry
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19
Wednesday, Aug 13 - Feb 11
Tuesday, Aug 26 - Feb 24
Sunday, Sep 7 - Mar 8
Thursday, Sep 11 - Mar 12
Wednesday, Sep 24 - Mar 25
Sunday, Oct 26 - Apr 26
Monday, Nov 3 - May 4
Friday, Dec 5 - May 29
Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)
Intermediate: Grades 8-12
Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
Friday, Aug 8 - Feb 20
Tuesday, Aug 26 - Feb 24
Sunday, Sep 28 - Mar 29
Wednesday, Oct 8 - Mar 8
Sunday, Nov 16 - May 17
Thursday, Dec 11 - Jun 4
Precalculus
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8
Wednesday, Aug 6 - Jan 21
Tuesday, Sep 9 - Feb 24
Sunday, Sep 21 - Mar 8
Monday, Oct 20 - Apr 6
Sunday, Dec 14 - May 31
MATHCOUNTS/AMC 8 Basics
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Wednesday, Sep 3 - Nov 19
Tuesday, Sep 16 - Dec 9
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Oct 6 - Jan 12
Thursday, Oct 16 - Jan 22
Tues, Thurs & Sun, Dec 9 - Jan 18 (meets three times a week!)
MATHCOUNTS/AMC 8 Advanced
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Tuesday, Aug 26 - Nov 11
Thursday, Sep 4 - Nov 20
Friday, Sep 12 - Dec 12
Monday, Sep 15 - Dec 8
Sunday, Oct 5 - Jan 11
Tues, Thurs & Sun, Dec 2 - Jan 11 (meets three times a week!)
Mon, Wed & Fri, Dec 8 - Jan 16 (meets three times a week!)
AMC 10 Problem Series
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 10 - Nov 2
Thursday, Aug 14 - Oct 30
Tuesday, Aug 19 - Nov 4
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Mon, Wed & Fri, Oct 6 - Nov 3 (meets three times a week!)
Tue, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)
AMC 10 Final Fives
Monday, Jun 30 - Jul 21
Friday, Aug 15 - Sep 12
Sunday, Sep 7 - Sep 28
Tuesday, Sep 9 - Sep 30
Monday, Sep 22 - Oct 13
Sunday, Sep 28 - Oct 19 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, Oct 8 - Oct 29
Thursday, Oct 9 - Oct 30
AMC 12 Problem Series
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22
Sunday, Aug 10 - Nov 2
Monday, Aug 18 - Nov 10
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Tues, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)
AMC 12 Final Fives
Thursday, Sep 4 - Sep 25
Sunday, Sep 28 - Oct 19
Tuesday, Oct 7 - Oct 28
Introduction to Programming with Python
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22
Thursday, Aug 14 - Oct 30
Sunday, Sep 7 - Nov 23
Tuesday, Dec 2 - Mar 3
I have seen many posts talking about commonly asked questions, such as finding the value of ,,,, why or even expressions of those terms combined as if that would make them defined. I have made this post to answer these questions once and for all, and I politely ask everyone to link this post to threads that are talking about this issue.
[list]
[*]Firstly, the case of . It is usually regarded that , not because this works numerically but because it is convenient to define it this way. You will see the convenience of defining other undefined things later on in this post.
[*]What about ? The issue here is that isn't even rigorously defined in this expression. What exactly do we mean by ? Unless the example in question is put in context in a formal manner, then we say that is meaningless.
[*]What about ? Suppose that . Then we would have , absurd. A more rigorous treatment of the idea is that does not exist in the first place, although you will see why in a calculus course. So the point is that is undefined.
[*]What about if ? An article from brilliant has a good explanation. Alternatively, you can just use a geometric series. Notice that
[*]What about ? Usually this is considered to be an indeterminate form, but I would also wager that this is also undefined.
[/list]
Hopefully all of these issues and their corollaries are finally put to rest. Cheers.
2nd EDIT (6/14/22): Since I originally posted this, it has since blown up so I will try to add additional information per the request of users in the thread below.
INDETERMINATE VS UNDEFINED
What makes something indeterminate? As you can see above, there are many things that are indeterminate. While definitions might vary slightly, it is the consensus that the following definition holds: A mathematical expression is be said to be indeterminate if it is not definitively or precisely determined. So how does this make, say, something like indeterminate? In analysis (the theory behind calculus and beyond), limits involving an algebraic combination of functions in an independent variable may often be evaluated by replacing these functions by their limits. However, if the expression obtained after this substitution does not provide sufficient information to determine the original limit, then the expression is called an indeterminate form. For example, we could say that is an indeterminate form.
But we need to more specific, this is still ambiguous. An indeterminate form is a mathematical expression involving at most two of , or , obtained by applying the algebraic limit theorem (a theorem in analysis, look this up for details) in the process of attempting to determine a limit, which fails to restrict that limit to one specific value or infinity, and thus does not determine the limit being calculated. This is why it is called indeterminate. Some examples of indeterminate forms are etc etc. So what makes something undefined? In the broader scope, something being undefined refers to an expression which is not assigned an interpretation or a value. A function is said to be undefined for points outside its domain. For example, the function given by the mapping is undefined for . On the other hand, is undefined because dividing by is not defined in arithmetic by definition. In other words, something is undefined when it is not defined in some mathematical context.
WHEN THE WATERS GET MUDDIED
So with this notion of indeterminate and undefined, things get convoluted. First of all, just because something is indeterminate does not mean it is not undefined. For example is considered both indeterminate and undefined (but in the context of a limit then it is considered in indeterminate form). Additionally, this notion of something being undefined also means that we can define it in some way. To rephrase, this means that technically, we can make something that is undefined to something that is defined as long as we define it. I'll show you what I mean.
One example of making something undefined into something defined is the extended real number line, which we define as So instead of treating infinity as an idea, we define infinity (positively and negatively, mind you) as actual numbers in the reals. The advantage of doing this is for two reasons. The first is because we can turn this thing into a totally ordered set. Specifically, we can let for each which means that via this order topology each subset has an infimum and supremum and is therefore compact. While this is nice from an analytic standpoint, extending the reals in this way can allow for interesting arithmetic! In it is perfectly OK to say that, So addition, multiplication, and division are all defined nicely. However, notice that we have some indeterminate forms here which are also undefined, So while we define certain things, we also left others undefined/indeterminate in the process! However, in the context of measure theory it is common to define as greenturtle3141 noted below. I encourage to reread what he wrote, it's great stuff! As you may notice, though, dividing by is undefined still! Is there a place where it isn't? Kind of. To do this, we can extend the complex numbers! More formally, we can define this extension as which we call the Riemann Sphere (it actually forms a sphere, pretty cool right?). As a note, means complex infinity, since we are in the complex plane now. Here's the catch: division by is allowed here! In fact, we have where and are left undefined. We also have Furthermore, we actually have some nice properties with multiplication that we didn't have before. In it holds that but and are left as undefined (unless there is an explicit need to change that somehow). One could define the projectively extended reals as we did with , by defining them as They behave in a similar way to the Riemann Sphere, with division by also being allowed with the same indeterminate forms (in addition to some other ones).
Due to excessive spam and inappropriate posts, we have locked the Prealgebra and Beginning Algebra threads.
We will either unlock these threads once we've cleaned them up or start new ones, but for now, do not start new marathon threads for these subjects. Any new marathon threads started while this announcement is up will be immediately deleted.
ki Basic Forum Rules and Info (Read before posting)
jellymoop368
NMay 16, 2018
by harry1234
f(Reminder: Do not post Alcumus or class homework questions on this forum. Instructions below.)f
Welcome to the Middle School Math Forum! Please take a moment to familiarize yourself with the rules.
Overview:
[list]
[*] When you're posting a new topic with a math problem, give the topic a detailed title that includes the subject of the problem (not just "easy problem" or "nice problem")
[*] Stay on topic and be courteous.
[*] Hide solutions!
[*] If you see an inappropriate post in this forum, simply report the post and a moderator will deal with it. Don't make your own post telling people they're not following the rules - that usually just makes the issue worse.
[*] When you post a question that you need help solving, post what you've attempted so far and not just the question. We are here to learn from each other, not to do your homework. :P
[*] Avoid making posts just to thank someone - you can use the upvote function instead
[*] Don't make a new reply just to repeat yourself or comment on the quality of others' posts; instead, post when you have a new insight or question. You can also edit your post if it's the most recent and you want to add more information.
[*] Avoid bumping old posts.
[*] Use GameBot to post alcumus questions.
[*] If you need general MATHCOUNTS/math competition advice, check out the threads below.
[*] Don't post other users' real names.
[*] Advertisements are not allowed. You can advertise your forum on your profile with a link, on your blog, and on user-created forums that permit forum advertisements.
[/list]
As always, if you have any questions, you can PM me or any of the other Middle School Moderators. Once again, if you see spam, it would help a lot if you filed a report instead of responding :)
Marathons!
Relays might be a better way to describe it, but these threads definitely go the distance! One person starts off by posting a problem, and the next person comes up with a solution and a new problem for another user to solve. Here's some of the frequently active marathons running in this forum:
[list][*]Algebra
[*]Prealgebra
[*]Proofs
[*]Factoring
[*]Geometry
[*]Counting & Probability
[*]Number Theory[/list]
Some of these haven't received attention in a while, but these are the main ones for their respective subjects. Rather than starting a new marathon, please give the existing ones a shot first.
Let be a given integer. Prove that infinitely many terms of the sequence , defined by are odd. (For a real number , denotes the largest integer not exceeding .)
Mine was probably on the 2024 MathCounts State Target Round Problem 8, where I wrote my answer as a fraction instead of a percent, which cost me a trip to Nationals that year.
Phillips Exeter is looking for math kids! That means YOU!
enya_yurself69
NToday at 2:54 PM
by idk12345678
I have received some insider information that may or may not prove to be helpful to you all. I am not sure where the best place to post this is, but somebody recommended msm so here I am.
[quote]admissions was explicitly told to accept more math kids, 25 26 and 27 have been pretty disappointing for the math dept bc of covid[/quote]
(source: a friend who talked to a faculty member on the admissions committee)
This means that Phillips Exeter is looking for more people like you all! I hope y'all choose to apply!
Remember that Exeter offers need blind financial aid :)
This is my 1434th post. Here are some of my favorite (non-1434-related) problems that I wrote for various contests over the past few years. A indicates my favorites.
-----
A function is defined over the positive integers as follows: , for prime, and for all relatively prime positive integers and ,. If is the smallest positive integer such that , find the units digit of .
(2023 VMAMC 10 #23)
-----
If convex quadrilateral satisfies ,,,, and , what is the value of ? Express your answer in simplest radical form.
(2024 STNUOCHTAM Sprint #30)
-----
Let and be the greatest odd divisor of . Let for even denote the product of every odd positive integer less than . If for positive integers and where is minimized, find the number of divisors of .
(2024 STNUOCHTAM Sprint #29)
-----
There exists exactly one positive real number such that the graph of the equation consists of a line and a point not on the line. The distance from the point to the line can be expressed as , where and are positive integers and is not divisible by any square greater than . Find .
(2023-2024 WOOT AIME 3 #12)
-----
Let . If are positive real numbers such that ,, and , find . Express your answer as a common fraction.
(2024 STNUOCHTAM Sprint #26)
-----
Let be a convex pentagon satisfying ,,. Let be the intersection of lines and . If has a perimeter of and an area of , find the area of .
(2024 TMC AMC 10 #25)
-----
Let be an acute scalene triangle with longest side . Let be the circumcenter of . Points and are chosen on such that and . If ,, and , the area of the circumcircle of can be expressed as . Find .
(2024 XCMC 10 #23)
-----
Find the sum of the digits of the unique prime number such that is divisible by .
(2024 XCMC 10 #24)
-----
Alex has a by grid of squares. Let be the number of ways that Alex can fill out each square with one of the letters ,,, or such that in every row and column, the number of 's and 's are the same, and the number of 's and 's are the same. (For example, a row with squares labeled or is valid, while a row with squares labeled or is not valid.) Find the remainder when is divided by .
(2024 XCMC 10 #25)
-----
How many ways are there to divide a by grid of squares along the gridlines into two or more pieces such that if three pieces meet at a point , then there are actually four pieces with a vertex at ? An example is shown below.
IMAGE
(2025 ELMOCOUNTS CDR #19)
-----
How many ways are there to label each cell of a 4-by-4 grid of squares with either 1, 2, 3, or 4 such that no two adjacent cells have the same label and no two adjacent cells have labels that sum to 5?
(2025 ELMOCOUNTS Sprint #20)
-----
Let be real numbers satisfying the system of equations What is the value of ?
(2025 ELMOCOUNTS Sprint #26)
-----
There are seven students at a camp. There are seven classes available and each student chooses some of the classes to take. Every student must choose at least two classes. How many ways are there for the students to choose the classes such that each pair of classes has exactly one student in common?
(2025 ELMOCOUNTS Team #8)
-----
In , the incircle is tangent to at , and is the reflection of across the midpoint of . Suppose that the inradii of and are and respectively, and the distance between their incenters is . What is the inradius of ? Express your answer as a common fraction.
(2025 ELMOCOUNTS Team #10)
-----
Let be a positive integer and let be the set of all -tuples of 's and 's. Two elements of are said to be neighboring if and only if they differ in only one coordinate. Bob colors the elements of red and blue such that each blue -tuple is neighboring to exactly two red -tuples and no two red -tuples neighbor each other. If , find the least possible value of .
Define the binary operations a diamond b = ((a + b) mod a) / (ab mod 7) and a heart b = (a − b − 3) / (ab mod 7). What is the value of (50 diamond 2024) heart 50?
”Solution”
First of all the numerator in the diamond operation can be simplified by doing distributing the modulo operation. This simplifies into 0 + a mod b since a is always divisible by a except for when it is 0 so a diamond b is .
Now unto the actual computation. We plug in and in a diamond b to get
We can also distribute the modulo across multiplication as well for it to be easier to calculate so it becomes
Now we just need to simplify this step by step and this should be the solution
The next thing we can do is to plug in and in a heart b and distribute the modulo as well
Then just simplify and get the final answer
If is constant, then or .
Consider a non-constant function that satisfies the functional equation.
Let denote the assertion of the functional equation. Claim 1.Proof
.
If , then from we get . Hence, applying , we obtain . It follows that , so is constant, absurd.
Therefore, .
Claim 2. and Proof
Obvious from and .
Claim 3..Proof
Suppose there exists such that .
Then by Claim 2, we get . .
Replacing with , we obtain .
Since , we have for all .
By periodicity, this extends to .
Hence, is even. Applying , we get ,
so is constant, absurd.
Therefore, , so .
Claim 4. and Proof
Since we have .
Additionally, .
If , then from we obtain , which contradicts Claim 3.
Thus, .
Claim 5.Proof
.
Since , the claim follows by induction.
Claim 6.Proof
.
Hence, .
Consider the sequence defined by . Then for some constants . Since for sufficiently large , we must have .
Thus, we have . The claim is proven.
Claim 7..Proof
By replacing with and , respectively, and combining with Claim 6 we obtainLet , we get , or is odd.
Let we get .
Thus, .
Claim 8.Proof
.
This post has been edited 2 times. Last edited by internationalnick123456, Apr 10, 2025, 4:02 AM