Y by AndreiVila, Ciobi_, RobertRogo, watery, Miquel-point
(a) Let
be collinear points (in order) and
a point in plane. Consider the disc
of center
and radius
, for some
. Prove that
is either the empty set or a segment of length at most
.
(b) Let
be a positive integer and
be a polynomial of degree
. Prove that ![\[\sup_{x\in[0,1]}|P(x)|\le(2n+1)^{n+1}\int\limits_{0}^{1}|P(x)|\mathrm{d}x.\]](//latex.artofproblemsolving.com/9/1/6/91647cd75888c5e9d291280c8ae3f199cc6d1bfd.png)






![$\mathcal{D}\cap [AC]$](http://latex.artofproblemsolving.com/0/5/6/0569d4130943000380a87b72be211965b5ff02ad.png)

(b) Let

![$P(X)\in\mathbb{C}[X]$](http://latex.artofproblemsolving.com/9/9/e/99e8cde28b0b9bc9414425ebc30fa2dc0386fb37.png)

![\[\sup_{x\in[0,1]}|P(x)|\le(2n+1)^{n+1}\int\limits_{0}^{1}|P(x)|\mathrm{d}x.\]](http://latex.artofproblemsolving.com/9/1/6/91647cd75888c5e9d291280c8ae3f199cc6d1bfd.png)