Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
JEE Related ig?
mikkymini2   0
19 minutes ago
Hey everyone,

Just wanted to see if there are any other JEE aspirants on this forum currently prepping for it[mention year if you can]

I am actually entering 10th this year and have decided to try for it...So this year is just going to go in me strengthening my math (IOQM level (heard its enough till Mains part, so will start from there) for the problem solving part, and learn some topics from 11th and 12th as well)

It would be great to connect with others who are going through the same thing - share study strategies, tips, resources, discuss, and maybe even form study groups(not sure how to tho :maybe: ) and motivate each other ig?. :D
So yea, cya later
0 replies
mikkymini2
19 minutes ago
0 replies
law of log
Miranda2829   17
N 24 minutes ago by Lankou
5log (5²) + 8 ˡºᵍ₈4 =

is this answer 6?
17 replies
Miranda2829
Today at 2:12 AM
Lankou
24 minutes ago
idk12345678 Math Contest
idk12345678   0
39 minutes ago
Welcome to the 1st idk12345678 Math Contest.
You have 4 hours. You do not have to prove your answers.
Post \signup username to sign up. Post your answers in a hide tag and I will tell you your score.*


The contest is attached to the post

Clarifications

*I mightve done them wrong feel free to ask about an answer
0 replies
idk12345678
39 minutes ago
0 replies
Classic Invariant
Mathdreams   1
N an hour ago by Lankou
Source: 2025 Nepal Mock TST Day 1 Problem 1

Prajit and Kritesh challenge each other with a marble game. In a bag, there are initially $2024$ red marbles and $2025$ blue marbles. The rules of the game are as follows:

Move: In each turn, a player (either Prajit or Kritesh) removes two marbles from the bag.

If the two marbles are of the same color, they are both discarded and a red marble is added to the bag.
If the two marbles are of different colors, they are both discarded and a blue marble is added to the bag.

The game continues by repeating the above move.

Prove that no matter what sequence of moves is made, the process always terminates with exactly one marble left. In addition, find the possible colors of the marble remaining.
1 reply
Mathdreams
2 hours ago
Lankou
an hour ago
high school math
aothatday   0
an hour ago
Let $x_n$ be a positive root of the equation $x_n^n=x^2+x+1$. find the limit of $n^2(x_n-x_{ n+1})$
0 replies
aothatday
an hour ago
0 replies
Two problems
Vulch   1
N 3 hours ago by Lankou
Solve the following problems:
1 reply
Vulch
4 hours ago
Lankou
3 hours ago
geometry problem
kjhgyuio   1
N 4 hours ago by kjhgyuio
........
1 reply
kjhgyuio
4 hours ago
kjhgyuio
4 hours ago
Inequalities
sqing   7
N Today at 9:03 AM by sqing
Let $ a,b,c $ be real numbers so that $ a+2b+3c=2 $ and $ 2ab+6bc+3ca =1. $ Show that
$$-\frac{1}{6} \leq ab-bc+ ca\leq \frac{1}{2}$$$$\frac{5-\sqrt{61}}{9} \leq a-b+c\leq \frac{5+\sqrt{61}}{9} $$
7 replies
sqing
Yesterday at 2:40 PM
sqing
Today at 9:03 AM
Circle and square
Marrelia   1
N Today at 6:16 AM by sunken rock
Given a circle with center $O$, and square $ABCD$. Point $A$ and $B$ are on the circle, and $CD$ is tangent to the circle at point $E$. Let $M$ represent the midpoint of $AD$ and $F$ represent the intersection between $AD$ and circle. Prove that $MF = FD$.
1 reply
Marrelia
Today at 3:00 AM
sunken rock
Today at 6:16 AM
Challenging Trigonometric Sums - AoPS Volume 2 Problem 277
Shiyul   2
N Today at 5:48 AM by sp0rtman00000
Problem #277 (Source: Mu Alpha Theta 1992)

Find $\color[rgb]{0.35,0.35,0.35}\displaystyle\sum_{n=0}^\infty\frac{\sin (nx)}{3^n}$ if $\color[rgb]{0.35,0.35,0.35}\sin x=1/3$ and $\color[rgb]{0.35,0.35,0.35} 0\le x\le \pi/2$.

I know what cosine of x is also positive because of the value of x. I've also tried to see if the value of sin(nx) ever repeats, but it doesn't. Can anyone give me a hint (not the full solution) on how to start on solving this problem? Thank you.
2 replies
Shiyul
Today at 4:44 AM
sp0rtman00000
Today at 5:48 AM
AoPS Volume 2, Problem 262
Shiyul   11
N Today at 4:26 AM by Shiyul
Given that $\color[rgb]{0.35,0.35,0.35}v_1=2$, $\color[rgb]{0.35,0.35,0.35}v_2=4$ and $\color[rgb]{0.35,0.35,0.35} v_{n+1}=3v_n-v_{n-1}$, prove that $\color[rgb]{0.35,0.35,0.35}v_n=2F_{2n-1}$, where the terms $\color[rgb]{0.35,0.35,0.35}F_n$ are the Fibonacci numbers.

Can anyone give me hint on how to solve this (not solve the full problem). I'm not sure how to relate the v series to the Fibonacci sequence.

11 replies
Shiyul
Yesterday at 4:22 AM
Shiyul
Today at 4:26 AM
Inequality
math2000   6
N Today at 4:05 AM by sqing
Let $a,b,c>0$.Prove that $\dfrac{1}{(a+b)\sqrt{(a+2c)(b+2c)}}>\dfrac{3}{2(a+b+c)^2}$
6 replies
math2000
Jan 22, 2021
sqing
Today at 4:05 AM
Hard number theory
td12345   3
N Today at 2:51 AM by mathprodigy2011
Let $q$ be a prime number. Define the set
\[
M_q = \left\{ x \in \mathbb{Z}^* \,\middle|\, \sqrt{x^2 + 2q^{2025} x} \in \mathbb{Q} \right\}. 
\]
Find the number of elements of \(M_2  \cup M_{2027}\).
3 replies
td12345
Yesterday at 11:32 PM
mathprodigy2011
Today at 2:51 AM
A complicated fraction
nsato   28
N Today at 1:24 AM by Soupboy0
Compute
\[ \frac{(10^4+324)(22^4+324)(34^4+324)(46^4+324)(58^4+324)}{(4^4+324)(16^4+324)(28^4+324)(40^4+324)(52^4+324)}. \]
28 replies
nsato
Mar 16, 2006
Soupboy0
Today at 1:24 AM
<DEF wanted, EF//AC , angle bisectors (2018 Euler Olympiad Remote 1.2)
parmenides51   0
Feb 12, 2021
The angle bisector $ BD $ was drawn in the triangle $ ABC $, and in the triangles $ ABD $ and $ CBD $ the angle bisectors $ DE $ and $ DF $, respectively. It turned out that $ EF \parallel AC $. Find the angle $DEF $ .
0 replies
parmenides51
Feb 12, 2021
0 replies
<DEF wanted, EF//AC , angle bisectors (2018 Euler Olympiad Remote 1.2)
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
parmenides51
30630 posts
#1
Y by
The angle bisector $ BD $ was drawn in the triangle $ ABC $, and in the triangles $ ABD $ and $ CBD $ the angle bisectors $ DE $ and $ DF $, respectively. It turned out that $ EF \parallel AC $. Find the angle $DEF $ .
Z K Y
N Quick Reply
G
H
=
a