Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
My Unsolved Problem
ZeltaQN2008   1
N an hour ago by wh0nix
Let \(f:[0,+\infty)\to\mathbb{R}\) be a function which is differentiable on \([0,+\infty)\) and satisfies
\[
\lim_{x\to+\infty}\bigl(f'(x)/e^x\bigr)=0.
\]Prove that
\[
\lim_{x\to+\infty}\bigl(f(x)/e^x\bigr)0.
\]
1 reply
ZeltaQN2008
3 hours ago
wh0nix
an hour ago
Find the value
sqing   8
N an hour ago by xytunghoanh
Source: Own
Let $a,b,c$ be distinct real numbers such that $ \frac{a^2}{(a-b)^2}+ \frac{b^2}{(b-c)^2}+ \frac{c^2}{(c-a)^2} =1. $ Find the value of $\frac{a}{a-b}+ \frac{b}{b-c}+ \frac{c}{c-a}.$
Let $a,b,c$ be distinct real numbers such that $\frac{a^2}{(b-c)^2}+ \frac{b^2}{(c-a)^2}+ \frac{c^2}{(a-b)^2}=2. $ Find the value of $\frac{a}{b-c}+ \frac{b}{c-a}+ \frac{c}{a-b}.$
Let $a,b,c$ be distinct real numbers such that $\frac{(a+b)^2}{(a-b)^2}+ \frac{(b+c)^2}{(b-c)^2}+ \frac{(c+a)^2}{(c-a)^2}=2. $ Find the value of $\frac{a+b}{a-b}+\frac{b+c}{b-c}+ \frac{c+a}{c-a}.$
8 replies
sqing
Mar 17, 2025
xytunghoanh
an hour ago
Simple inequality
sqing   22
N 2 hours ago by ND_
Source: JBMO 2011 Shortlist A3
$\boxed{\text{A3}}$If $a,b$ be positive real numbers, show that:$$ \displaystyle{\sqrt{\dfrac{a^2+ab+b^2}{3}}+\sqrt{ab}\leq a+b}$$
22 replies
sqing
May 15, 2016
ND_
2 hours ago
greatest volume
hzbrl   0
2 hours ago
Source: purple comet
A large sphere with radius 7 contains three smaller balls each with radius 3 . The three balls are each externally tangent to the other two balls and internally tangent to the large sphere. There are four right circular cones that can be inscribed in the large sphere in such a way that the bases of the cones are tangent to all three balls. Of these four cones, the one with the greatest volume has volume $n \pi$. Find $n$.
0 replies
hzbrl
2 hours ago
0 replies
Serbia national Olympiad Day 2 Problem 2
IgorM   19
N 2 hours ago by IndexLibrorumProhibitorum
Source: Serbia national Olympiad Day 2 Problem 2
Let $x,y,z$ be nonnegative positive integers.
Prove $\frac{x-y}{xy+2y+1}+\frac{y-z}{zy+2z+1}+\frac{z-x}{xz+2x+1}\ge 0$
19 replies
IgorM
Mar 28, 2015
IndexLibrorumProhibitorum
2 hours ago
find angle
TBazar   2
N 3 hours ago by sunken rock
Given $ABC$ triangle with $AC>BC$. We take $M$, $N$ point on AC, AB respectively such that $AM=BC$, $CM=BN$. $BM$, $AN$ lines intersect at point $K$. If $2\angle AKM=\angle ACB$, find $\angle ACB$
2 replies
TBazar
5 hours ago
sunken rock
3 hours ago
Geometry marathon
HoRI_DA_GRe8   845
N 3 hours ago by leon.tyumen
Ok so there's been no geo marathon here for more than 2 years,so lets start one,rules remain same.
1st problem.
Let $PQRS$ be a cyclic quadrilateral with $\angle PSR=90°$ and let $H$ and $K$ be the feet of altitudes from $Q$ to the lines $PR$ and $PS$,.Prove $HK$ bisects $QS$.
P.s._eeezy ,try without ss line.
845 replies
1 viewing
HoRI_DA_GRe8
Sep 5, 2021
leon.tyumen
3 hours ago
polonomials
Ducksohappi   0
3 hours ago
$P\in \mathbb{R}[x] $ with even-degree
Prove that there is a non-negative integer k such that
$Q_k(x)=P(x)+P(x+1)+...+P(x+k)$
has no real root
0 replies
Ducksohappi
3 hours ago
0 replies
Find a and b such that a^2 = (a-b)^3 + b and a and b are coprimes
picysm   2
N 3 hours ago by picysm
it is given that a and b are coprime to each other and a, b belong to N*
2 replies
picysm
Apr 25, 2025
picysm
3 hours ago
Algebra problem
Deomad123   1
N 3 hours ago by lbh_qys
Let $n$ be a positive integer.Prove that there is a polynomial $P$ with integer coefficients so that $a+b+c=0$,then$$a^{2n+1}+b^{2n+1}+c^{2n+1}=abc[P(a,b)+P(b,c)+P(a,c)]$$.
1 reply
Deomad123
May 3, 2025
lbh_qys
3 hours ago
Palindrome
Darealzolt   1
N 4 hours ago by ehz2701
Find the number of six-digit palindromic numbers that are divisible by \( 37 \).
1 reply
Darealzolt
Today at 4:13 AM
ehz2701
4 hours ago
Four tangent lines concur on the circumcircle
v_Enhance   35
N 4 hours ago by bin_sherlo
Source: USA TSTST 2018 Problem 3
Let $ABC$ be an acute triangle with incenter $I$, circumcenter $O$, and circumcircle $\Gamma$. Let $M$ be the midpoint of $\overline{AB}$. Ray $AI$ meets $\overline{BC}$ at $D$. Denote by $\omega$ and $\gamma$ the circumcircles of $\triangle BIC$ and $\triangle BAD$, respectively. Line $MO$ meets $\omega$ at $X$ and $Y$, while line $CO$ meets $\omega$ at $C$ and $Q$. Assume that $Q$ lies inside $\triangle ABC$ and $\angle AQM = \angle ACB$.

Consider the tangents to $\omega$ at $X$ and $Y$ and the tangents to $\gamma$ at $A$ and $D$. Given that $\angle BAC \neq 60^{\circ}$, prove that these four lines are concurrent on $\Gamma$.

Evan Chen and Yannick Yao
35 replies
v_Enhance
Jun 26, 2018
bin_sherlo
4 hours ago
tangent and tangent again
ItzsleepyXD   0
5 hours ago
Source: holder send me this
Given an acute non-isosceles triangle $ABC$ with circumcircle $\Gamma$. $M$ is the midpoint of segment $BC$ and $N$ is the midpoint of $\overarc{BC}$ of $\Gamma$ (the one that doesn't contain $A$). $X$ and $Y$ are points on $\Gamma$ such that $BX \parallel CY \parallel AM$. Assume there exists point $Z$ on segment $BC$ such that circumcircle of triangle $XYZ$ is tangent to $BC$. Let $\omega$ be the circumcircle of triangle $ZMN$. Line $AM$ meets $\omega$ for the second time at $P$. Let $K$ be a point on $\omega$ such that $KN \parallel AM, \omega_b$ be a circle thaat passes through $B$, $X$ and tangents to $BC$ and $\omega_C$ be a circle that passes through $C,Y$ and tangents to $BC$. Prove that circle with center $K$ and radias $KP$ is tangent to circles $\omega_B,\omega_C$ and $\Gamma$.
0 replies
ItzsleepyXD
5 hours ago
0 replies
Geometry Proof
strongstephen   17
N Today at 3:59 AM by ohiorizzler1434
Proof that choosing four distinct points at random has an equal probability of getting a convex quadrilateral vs a concave one.
not cohesive proof alert!

NOTE: By choosing four distinct points, that means no three points lie on the same line on the Gaussian Plane.
NOTE: The probability of each point getting chosen don’t need to be uniform (as long as it is symmetric about the origin), you just need a way to choose points in the infinite plane (such as a normal distribution)

Start by picking three of the four points. Next, graph the regions where the fourth point would make the quadrilateral convex or concave. In diagram 1 below, you can see the regions where the fourth point would be convex or concave. Of course, there is the centre region (the shaded triangle), but in an infinite plane, the probability the fourth point ends up in the finite region approaches 0.

Next, I want to prove to you the area of convex/concave, or rather, the probability a point ends up in each area, is the same. Referring to the second diagram, you can flip each concave region over the line perpendicular to the angle bisector of which the region is defined. (Just look at it and you'll get what it means.) Now, each concave region has an almost perfect 1:1 probability correspondence to another convex region. The only difference is the finite region (the triangle, shaded). Again, however, the actual significance (probability) of this approaches 0.

If I call each of the convex region's probability P(a), P(c), and P(e) and the concave ones P(b), P(d), P(f), assuming areas a and b are on opposite sides (same with c and d, e and f) you can get:
P(a) = P(b)
P(c) = P(d)
P(e) = P(f)

and P(a) + P(c) + P(e) = P(convex)
and P(b) + P(d) + P(f) = P(concave)

therefore:
P(convex) = P(concave)
17 replies
strongstephen
May 6, 2025
ohiorizzler1434
Today at 3:59 AM
Easy Problem
MathleteMystic   2
N Apr 3, 2025 by Mathematicalprodigy37
Prove that among n integers we can always choose some of them whose sum is a multiple on n.

I do have a solution to this, but could someone write a more descriptive one, please? Something like the logic behind it...
2 replies
MathleteMystic
Apr 3, 2025
Mathematicalprodigy37
Apr 3, 2025
Easy Problem
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MathleteMystic
7 posts
#1
Y by
Prove that among n integers we can always choose some of them whose sum is a multiple on n.

I do have a solution to this, but could someone write a more descriptive one, please? Something like the logic behind it...
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Sadigly
161 posts
#2
Y by
Consider $a_1;a_1+a_2;a_1+a_2+a_3;...;a_1+a_2+a_3+...+a_n$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mathematicalprodigy37
21 posts
#3 • 1 Y
Y by MathleteMystic
Completing the above proof,
Consider a_1, a_2, a_1+a_2,...a_1+a_2+a_3+...+a_n. Notice this is a list of n+1 positive integers. Notice that, by the pigeonhole principle, then at least one of the first n positive integers must share a remainder modulo n with a_1+a_2+...+a_n. Then, take that number and subtract it from a_1+a_2+...+a_n. however, notice that this can be written as a sum of some a_i's! But we assumed that those 2 numbers have the same remainder when divided by n, so thus that number is not only can be written as a sum of some of a_i's, it is divisible by n. Thus we are done.
#nt main
Z K Y
N Quick Reply
G
H
=
a