ka April Highlights and 2025 AoPS Online Class Information
jlacosta0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.
WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.
Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!
Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29
Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28
Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19
Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30
Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14
Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19
Intermediate: Grades 8-12
Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21
AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22
Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22
Any idea?? Diff equational system combined with Matrix theory.
Consider the equation dX/dt=X^2, where X(t) is an n×n matrix satisfying the condition detX=0. It is known that there are no solutions of this equation defined on a bounded interval, but there exist non-continuable solutions defined on unbounded intervals of the form (t ,+∞) and (−∞,t). Find n.
Source: Open Mathematical Olympiad for University Students (OMOUS-2025)
Let be a ring not assumed to have an identity, with the following properties:
(i) There is an element of that is not nilpotent.
(ii) If are nonzero elements of , then .
Show that is a division ring, that is, the nonzero elements of R form a group under multiplication.
Let be an odd prime number, and let denote the field of integers modulo . Let be the ring of polynomials over , and let be given by where mod . Find the greatest nonnegative integer such that divides in .
Question:
consider the angle formed by 2 half lines in the three dimensional space. Prove that the average of the projection of the angle into all of the planes is equal to the angle
The answer is in the attachments.
Please could anyone prove the answer to me in detail.
Question:
consider the angle formed by 2 half lines in the three dimensional space. Prove that the average of the projection of the angle into all of the planes is equal to the angle
The answer is in the attachments.
Please could anyone prove the answer to me in detail.
Given a n*n matrix A, prove that there exists a matrix B such that ABA = A
Solution: I have submitted the attachment
The answer is too symbol dense for me to understand the answer. What I have undertood:
There is use of direct product in the orthogonal decomposition. The decomposition is made with kernel and some T (which the author didn't mention) but as per orthogonal decomposition it must be its orthogonal complement.
Can anyone explain the answer in much much more detail with less use of symbols ( you can also use symbols but clearly define it).
Let be a -dimensional inner product space of column vectors, where for and , the inner product of and is defined as For , define a linear transformation on as follows: Given satisfying let . Then the dimension of the linear space formed by all linear transformations satisfying is
Can anyone kindly share some problems/handouts on matrices & determinants (problems like Putnam 2004 A3, which are simple to state and doesnt involve heavy theory)?
We fix a basis, for example the canonical basis of .
The group consists of the invertible linear maps from to , hence -matrices over that are invertible.
The group has the same elements. Since the group action in both actions is given by matrix multiplication, we indeed have .