Happy Memorial Day! Please note that AoPS Online is closed May 24-26th.

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
[PMO26 Areas] I.17 FE and fraction part
aops-g5-gethsemanea2   2
N 2 minutes ago by Magdalo
Let $f:\mathbb R\backslash\{0,1\}\to\mathbb R$ be a function such that $$f(x)+f\left(\frac1{1-x}\right)=\frac1{x(1-x)}.$$The fractional part of $f(2024)$ can be expressed in the form $\frac ab$, where $a$ and $b$ are relatively prime positive integers. Find the remainder when $b-a$ is divided by $1000$.
2 replies
aops-g5-gethsemanea2
Feb 9, 2025
Magdalo
2 minutes ago
Functional Equations
burntpizza001   0
44 minutes ago
Let $f:R\rightarrow{}R$ is a function satisfying $f(2-x)=f(2+x)$ and $f(20-x)=f(x)$, $\forall x\in R$.

(i) If $f(0)  = 5$ then minimum possible number of values of $x$ satisfying $f(x)=5$, for $x\in[0,170]$ is?

(ii) Graph of $y=f(x)$$ is symmetrical about which line?
0 replies
burntpizza001
44 minutes ago
0 replies
Help find beautiful/interesting topics within Intermediate Algebra
runstarend   1
N an hour ago by aops-g5-gethsemanea2
Hello, I am working through the Intermediate Algebra book, and I would like to extend my understanding
beyond the table of contents. The challenge problems are quite good for this, however, I would like to ask
for more beautiful content that would be accessible to someone who just finished a certain chapter of the
book. For example Chapter 1, within it's challenge problems, vaguely introduced the field of study of Linear
Algebra.

Basic Techniques for Solving Equations
Isolation.......................................................................................................................................... 1
Substitution................................................................................................................................... 6
Elimination................................................................................................................................... 9
Larger Systems of Linear Equations......................................................................................... 14
Summary...................................................................................................................................... 19
Function Basics............................................................................................................................. 24
Graphing Functions.................................................................................................................... 32
Composition................................................................................................................................. 39
Inverse Functions....................................................................................................................... 43
Summary....................................................................................................................................... 49
Complex Numbers
Arithmetic of Complex Numbers............................................................................................ 55
The Complex Plane.................................................................................................................... 61#
Real and Imaginary Parts........................................................................................................... 65
Graphing in the Complex Plane............................................................................................... 70
Summary....................................................................................................................................... 74
Factoring Quadratics ................................................................................................................. 79
Relating Roots and Coefficients .............................................................................................. 84
Completing the Square............................................................................................................. 88
The Discriminant.......................................................................................................................... 96
Quadratic Inequalities................................................................................................................ 99
Summary.........................................................................................................................................102
Conics
Parabolas.........................................................................................................................................107
Problem Solving With Parabolas................................................................................................. 118
Maxima and Minima of Quadratics............................................................................................ 121
Circles...............................................................................................................................................126
Ellipses............................................................................................................................................129
Hyperbolas......................................................................................................................................142
Summary.........................................................................................................................................156
Polynomial Division
Polynomial Review.......................................................................................................................163
Introduction to Polynomial Division .........................................................................................166
Synthetic Division..........................................................................................................................177
The Remainder Theorem..............................................................................................................185
Summary......................................................................................................................................... 189
Polynomial Roots Part I
The Factor Theorem.......................................................................................................................193
Integer Roots................................................................................................................................... 198
Rational Roots................................................................................................................................206
Bounds............................................................................................................................................ 212
Graphing and the Fundamental Theorem of Algebra.............................................................215
Algebraic Applications of the Fundamental Theorem.............................................................219
Summary.........................................................................................................................................225
Polynomial Roots Part II
Irrational Roots..................................................................................................................................230
Nonreal Roots ..................................................................................................................................239
Vieta's Formulas...............................................................................................................................244
Using Roots to Make Equations...................................................................................................253
Summary........................................................................................................................................... 256
Factoring Multivariable Polynomials
Grouping........................................................................................................................................... 261
Sums and Differences of Powers...................................................................................................268
9.3* The Factor Theorem for Multivariable Polynomials................................................................... 277
Summary............................................................................................................................................ 282
Sequences and Series
Arithmetic Sequences..................................................................................................................... 286
Arithmetic Series.............................................................................................................................. 292
Geometric Sequences.....................................................................................................................298
Geometric Series.............................................................................................................................. 302
Sequence, Summation, and Product Notation.......................................................................... 313
Nested Sums and Products............................................................................................ 325
Summary...........................................................................................................................................331
I Identities, Manipulations, and Induction
Brute Force.........................................................................................................................................
Ratios...................................................................................................................................................
Induction........................................................................................................................................ ....
Binomial Theorem............................................................................................................................358
Summary..................................................... 365
Manipulating Inequalities............................................................................................................
The Trivial Inequality..................................................................................................................
AM-GM Inequality with Two Variables...................................................................................
AM-GM with More Variables........................................................................................................389
The Cauchy-Schwarz Inequality..................................................................................................392
Maxima and Minima ....................................................................................................................400
Summary......................................................................................................................................... 406
Exponents and Logarithms
Exponential Function Basics.....................................................................................................
Introduction to Logarithms........................................................................................................
Logarithmic Identities.................................................................................................................
Using Logarithm Identities...........................................................................................................433
Switching Between Logs and Exponents....................................................................................441
Natural Logarithms and Exponential Decay............................................................................ 444
Summary.........................................................................................................................................451
Radicals
Raising Radicals to Powers.......................................................................................................... 456
Evaluating Expressions With Radicals........................................................................................ 465
Radical Conjugates .......................................................................................................................470
Summary......................................................................................................................................... 473
Special Classes of Functions
Rational Functions and Their Graphs
Rational Function Equations and Inequalities..........................................................................486
Even and Odd Functions.............................................................................................................. 492
Monotonic Functions
Piecewise Defined Functions
Introduction to Piecewise Defined Functions............................................................................ 508
Absolute Value.................................................................................................................................517
Graphing Absolute Value......................................................................................... 523
Floor and Ceiling...................................................................................... 529
Problem Solving with the Floor Function....................................................................................535
Algebra of Recursive Sequences................................................................................................
Telescoping....................................................................................................................................... 552
Sums of Polynomial Series............................................................................................................561
17.4 Arithmetico-Geometric Series
17.5 Finite Differences
More Inequalities
Mean Inequality Chain...............................................................................................................
The Rearrangement Inequality...................................................................................................
When Formulas Fail.....................................................................................................................
Finding Values..............................................................................................................................
Finding Functions with Substitution ......................................................................................
Separation..........................................................................................................................................619
Cyclic Functions..............................................................................................................................621
Symmetry.......................................................................................................................................... 631
Substitution for Simplification......................................................................................................638
Method of Undetermined Coefficients ...................................................................................... 644
Constructing Polynomials From Roots...................................................................................... 649
Common Divisors of Polynomials................................................................................................655
Symmetric Sums Revisited............................................................................................................658
1 reply
runstarend
Oct 30, 2024
aops-g5-gethsemanea2
an hour ago
Linear algebra problem
Feynmann123   0
an hour ago
Let A \in \mathbb{R}^{n \times n} be a matrix such that A^2 = A and A \neq I and A \neq 0.

Problem:
a) Show that the only possible eigenvalues of A are 0 and 1.
b) What kind of matrix is A? (Hint: Think projection.)
c) Give a 2×2 example of such a matrix.
0 replies
Feynmann123
an hour ago
0 replies
Prove the inequality
Butterfly   0
2 hours ago
Let $a,b,c$ be real numbers such that $a+b+c=3$. Prove $$a^3b+b^3c+c^3a\le \frac{9}{32}(63+5\sqrt{105}).$$
0 replies
Butterfly
2 hours ago
0 replies
Functional equation
shactal   1
N 2 hours ago by ariopro1387
Let $f:\mathbb R\to \mathbb R$ a function satifying $$f(x+2xy) = f(x) + 2f(xy)$$for all $x,y\in \mathbb R$.
If $f(1991)=a$, then what is $f(1992)$, the answer is in terms of $a$.
1 reply
shactal
4 hours ago
ariopro1387
2 hours ago
interesting diophantiic fe in natural numbers
skellyrah   5
N 2 hours ago by skellyrah
Find all functions \( f : \mathbb{N} \to \mathbb{N} \) such that for all \( m, n \in \mathbb{N} \),
\[
mn + f(n!) = f(f(n))! + n \cdot \gcd(f(m), m!).
\]
5 replies
skellyrah
Yesterday at 8:01 AM
skellyrah
2 hours ago
Non-linear Recursive Sequence
amogususususus   3
N 2 hours ago by SunnyEvan
Given $a_1=1$ and the recursive relation
$$a_{i+1}=a_i+\frac{1}{a_i}$$for all natural number $i$. Find the general form of $a_n$.

Is there any way to solve this problem and similar ones?
3 replies
amogususususus
Jan 24, 2025
SunnyEvan
2 hours ago
Inspired by 2025 Beijing
sqing   6
N 3 hours ago by sqing
Source: Own
Let $ a,b,c,d >0  $ and $ (a^2+b^2+c^2)(b^2+c^2+d^2)=36. $ Prove that
$$ab^2c^2d \leq 8$$$$a^2bcd^2 \leq 16$$$$ ab^3c^3d \leq \frac{2187}{128}$$$$ a^3bcd^3 \leq \frac{2187}{32}$$
6 replies
sqing
Yesterday at 4:56 PM
sqing
3 hours ago
Serbian selection contest for the IMO 2025 - P4
OgnjenTesic   2
N 3 hours ago by sqing-inequality-BUST
Source: Serbian selection contest for the IMO 2025
For a permutation $\pi$ of the set $A = \{1, 2, \ldots, 2025\}$, define its colorfulness as the greatest natural number $k$ such that:
- For all $1 \le i, j \le 2025$, $i \ne j$, if $|i - j| < k$, then $|\pi(i) - \pi(j)| \ge k$.
What is the maximum possible colorfulness of a permutation of the set $A$? Determine how many such permutations have maximal colorfulness.

Proposed by Pavle Martinović
2 replies
OgnjenTesic
May 22, 2025
sqing-inequality-BUST
3 hours ago
Nice "if and only if" function problem
ICE_CNME_4   14
N 3 hours ago by wh0nix
Let $f : [0, \infty) \to [0, \infty)$, $f(x) = \dfrac{ax + b}{cx + d}$, with $a, d \in (0, \infty)$, $b, c \in [0, \infty)$. Prove that there exists $n \in \mathbb{N}^*$ such that for every $x \geq 0$
\[
f_n(x) = \frac{x}{1 + nx}, \quad \text{if and only if } f(x) = \frac{x}{1 + x}, \quad \forall x \geq 0.
\](For $n \in \mathbb{N}^*$ and $x \geq 0$, the notation $f_n(x)$ represents $\underbrace{(f \circ f \circ \dots \circ f)}_{n \text{ times}}(x)$. )

Please do it at 9th grade level. Thank you!
14 replies
ICE_CNME_4
Friday at 7:23 PM
wh0nix
3 hours ago
2-var inequality
sqing   1
N 3 hours ago by sqing
Source: Own
Let $ a,b> 0 , ab(a+b+1) =3.$ Prove that$$\frac{1}{a^2}+\frac{1}{b^2}+\frac{24}{(a+b)^2} \geq 8$$$$ \frac{a}{b^2}+\frac{b}{a^2}+\frac{49}{(a+  b)^2} \geq \frac{57}{4}$$Let $ a,b> 0 ,  (a+b)(ab+1) =4.$ Prove that$$\frac{1}{a^2}+\frac{1}{b^2}+\frac{40}{(a+b)^2} \geq 12$$$$\frac{a}{b^2}+\frac{b}{a^2}+\frac{76}{(a+ b)^2}  \geq 21$$
1 reply
sqing
4 hours ago
sqing
3 hours ago
Balkan Mathematical Olympiad
ABCD1728   1
N 3 hours ago by ABCD1728
Can anyone provide the PDF version of the book "Balkan Mathematical Olympiads" by Mircea Becheanu and Bogdan Enescu (published by XYZ press in 2014), thanks!
1 reply
ABCD1728
Yesterday at 11:27 PM
ABCD1728
3 hours ago
area of quadrilateral
AlanLG   1
N 4 hours ago by Altronrren
Source: 3rd National Women´s Contest of Mexican Mathematics Olympiad 2024 , level 1+2 p5
Consider the acute-angled triangle \(ABC\). The segment \(BC\) measures 40 units. Let \(H\) be the orthocenter of triangle \(ABC\) and \(O\) its circumcenter. Let \(D\) be the foot of the altitude from \(A\) and \(E\) the foot of the altitude from \(B\). Additionally, point \(D\) divides the segment \(BC\) such that \(\frac{BD}{DC} = \frac{3}{5}\). If the perpendicular bisector of segment \(AC\) passes through point \(D\), calculate the area of quadrilateral \(DHEO\).
1 reply
AlanLG
Jun 14, 2024
Altronrren
4 hours ago
Maximizing the Sum of Minimum Differences in Permutations
chinawgp   0
Apr 19, 2025
Problem Statement

Given a positive integer n \geq 3 , consider a permutation \pi = (a_1, a_2, \dots, a_n) of \{1, 2, \dots, n\} . For each i ( 1 \leq i \leq n-1 ), define d_i as the minimum absolute difference between a_i and any subsequent element a_j ( j > i ), i.e.,
d_i = \min \{ |a_i - a_j| \mid j > i \}.

Let S_n denote the maximum possible sum of d_i over all permutations of \{1, \dots, n\} , i.e.,
S_n = \max_{\pi} \sum_{i=1}^{n-1} d_i.

Proposed Construction

I found a method to construct a permutation that seems to maximize \sum d_i :
1. Fix a_{n-1} = 1 and a_n = n .
2. For each i (from n-2 down to 1 ):
- Sort a_{i+1}, a_{i+2}, \dots, a_n in increasing order.
- Compute the gaps between consecutive elements.
- Place a_i in the middle of the largest gap (if the gap has even length, choose the smaller midpoint).

Partial Results

1. I can prove that 1 and n must occupy the last two positions. Otherwise, moving either 1 or n further right does not decrease \sum d_i .
2. The construction greedily maximizes each d_i locally, but I’m unsure if this ensures global optimality.

Request for Help

- Does this construction always yield the maximum S_n ?
- If yes, how can we rigorously prove it? (Induction? Exchange arguments?)
- If no, what is the correct approach?

Observations:
- The construction works for small n (e.g., n=3,4,5,...,12 ).
- The problem resembles optimizing "minimum gaps" in permutations.

Any insights or references would be greatly appreciated!
0 replies
chinawgp
Apr 19, 2025
0 replies
Maximizing the Sum of Minimum Differences in Permutations
G H J
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
chinawgp
3 posts
#1
Y by
Problem Statement

Given a positive integer n \geq 3 , consider a permutation \pi = (a_1, a_2, \dots, a_n) of \{1, 2, \dots, n\} . For each i ( 1 \leq i \leq n-1 ), define d_i as the minimum absolute difference between a_i and any subsequent element a_j ( j > i ), i.e.,
d_i = \min \{ |a_i - a_j| \mid j > i \}.

Let S_n denote the maximum possible sum of d_i over all permutations of \{1, \dots, n\} , i.e.,
S_n = \max_{\pi} \sum_{i=1}^{n-1} d_i.

Proposed Construction

I found a method to construct a permutation that seems to maximize \sum d_i :
1. Fix a_{n-1} = 1 and a_n = n .
2. For each i (from n-2 down to 1 ):
- Sort a_{i+1}, a_{i+2}, \dots, a_n in increasing order.
- Compute the gaps between consecutive elements.
- Place a_i in the middle of the largest gap (if the gap has even length, choose the smaller midpoint).

Partial Results

1. I can prove that 1 and n must occupy the last two positions. Otherwise, moving either 1 or n further right does not decrease \sum d_i .
2. The construction greedily maximizes each d_i locally, but I’m unsure if this ensures global optimality.

Request for Help

- Does this construction always yield the maximum S_n ?
- If yes, how can we rigorously prove it? (Induction? Exchange arguments?)
- If no, what is the correct approach?

Observations:
- The construction works for small n (e.g., n=3,4,5,...,12 ).
- The problem resembles optimizing "minimum gaps" in permutations.

Any insights or references would be greatly appreciated!
Z K Y
N Quick Reply
G
H
=
a