Stay ahead of learning milestones! Enroll in a class over the summer!

Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Inequality on APMO P5
Jalil_Huseynov   41
N an hour ago by Mathandski
Source: APMO 2022 P5
Let $a,b,c,d$ be real numbers such that $a^2+b^2+c^2+d^2=1$. Determine the minimum value of $(a-b)(b-c)(c-d)(d-a)$ and determine all values of $(a,b,c,d)$ such that the minimum value is achived.
41 replies
Jalil_Huseynov
May 17, 2022
Mathandski
an hour ago
APMO 2016: one-way flights between cities
shinichiman   18
N 2 hours ago by Mathandski
Source: APMO 2016, problem 4
The country Dreamland consists of $2016$ cities. The airline Starways wants to establish some one-way flights between pairs of cities in such a way that each city has exactly one flight out of it. Find the smallest positive integer $k$ such that no matter how Starways establishes its flights, the cities can always be partitioned into $k$ groups so that from any city it is not possible to reach another city in the same group by using at most $28$ flights.

Warut Suksompong, Thailand
18 replies
shinichiman
May 16, 2016
Mathandski
2 hours ago
Circles intersecting each other
rkm0959   9
N 2 hours ago by Mathandski
Source: 2015 Final Korean Mathematical Olympiad Day 2 Problem 6
There are $2015$ distinct circles in a plane, with radius $1$.
Prove that you can select $27$ circles, which form a set $C$, which satisfy the following.

For two arbitrary circles in $C$, they intersect with each other or
For two arbitrary circles in $C$, they don't intersect with each other.
9 replies
rkm0959
Mar 22, 2015
Mathandski
2 hours ago
Max value
Hip1zzzil   0
2 hours ago
Source: KMO 2025 Round 1 P12
Three distinct nonzero real numbers $x,y,z$ satisfy:

(i)$2x+2y+2z=3$
(ii)$\frac{1}{xz}+\frac{x-y}{y-z}=\frac{1}{yz}+\frac{y-z}{z-x}=\frac{1}{xy}+\frac{z-x}{x-y}$
Find the maximum value of $18x+12y+6z$.
0 replies
Hip1zzzil
2 hours ago
0 replies
2018 Hong Kong TST2 problem 4
YanYau   4
N 2 hours ago by Mathandski
Source: 2018HKTST2P4
In triangle $ABC$ with incentre $I$, let $M_A,M_B$ and $M_C$ by the midpoints of $BC, CA$ and $AB$ respectively, and $H_A,H_B$ and $H_C$ be the feet of the altitudes from $A,B$ and $C$ to the respective sides. Denote by $\ell_b$ the line being tangent tot he circumcircle of triangle $ABC$ and passing through $B$, and denote by $\ell_b'$ the reflection of $\ell_b$ in $BI$. Let $P_B$ by the intersection of $M_AM_C$ and $\ell_b$, and let $Q_B$ be the intersection of $H_AH_C$ and $\ell_b'$. Defined $\ell_c,\ell_c',P_C,Q_C$ analogously. If $R$ is the intersection of $P_BQ_B$ and $P_CQ_C$, prove that $RB=RC$.
4 replies
YanYau
Oct 21, 2017
Mathandski
2 hours ago
Prove that the triangle is isosceles.
TUAN2k8   4
N 2 hours ago by JARP091
Source: My book
Given acute triangle $ABC$ with two altitudes $CF$ and $BE$.Let $D$ be the point on the line $CF$ such that $DB \perp BC$.The lines $AD$ and $EF$ intersect at point $X$, and $Y$ is the point on segment $BX$ such that $CY \perp BY$.Suppose that $CF$ bisects $BE$.Prove that triangle $ACY$ is isosceles.
4 replies
TUAN2k8
Yesterday at 9:55 AM
JARP091
2 hours ago
Pythagoras...
Hip1zzzil   0
2 hours ago
Source: KMO 2025 Round 1 P20
Find the sum of all $k$s such that:
There exists two odd positive integers $a,b$ such that ${k}^{2}={a}^{2b}+{(2b)}^{4}.$
0 replies
Hip1zzzil
2 hours ago
0 replies
Hard Function
johnlp1234   2
N 2 hours ago by maromex
Find all function $f:\mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ such that:
$$f(x^3+f(y))=y+(f(x))^3$$
2 replies
johnlp1234
Jul 8, 2020
maromex
2 hours ago
Guangxi High School Mathematics Competition 2025 Q12
sqing   3
N 2 hours ago by sqing
Source: China Guangxi High School Mathematics Competition 2025 Q12
Let $ a,b,c>0  $. Prove that
$$abc\geq \frac {a+b+c}{\frac {1}{a^2}+\frac {1}{b^2}+\frac {1}{c^2} }\geq(a+b-c)(b+c-a)(c+a-b)$$
3 replies
sqing
3 hours ago
sqing
2 hours ago
[CASH PRIZES] IndyINTEGIRLS Spring Math Competition
Indy_Integirls   12
N 2 hours ago by tikachaudhuri
[center]IMAGE

Greetings, AoPS! IndyINTEGIRLS will be hosting a virtual math competition on May 25,
2024 from 12 PM to 3 PM EST.
Join other woman-identifying and/or non-binary "STEMinists" in solving problems, socializing, playing games, winning prizes, and more! If you are interested in competing, please register here![/center]

----------

[center]Important Information[/center]

Eligibility: This competition is open to all woman-identifying and non-binary students in middle and high school. Non-Indiana residents and international students are welcome as well!

Format: There will be a middle school and high school division. In each separate division, there will be an individual round and a team round, where students are grouped into teams of 3-4 and collaboratively solve a set of difficult problems. There will also be a buzzer/countdown/Kahoot-style round, where students from both divisions are grouped together to compete in a MATHCOUNTS-style countdown round! There will be prizes for the top competitors in each division.

Problem Difficulty: Our amazing team of problem writers is working hard to ensure that there will be problems for problem-solvers of all levels! The middle school problems will range from MATHCOUNTS school round to AMC 10 level, while the high school problems will be for more advanced problem-solvers. The team round problems will cover various difficulty levels and are meant to be more difficult, while the countdown/buzzer/Kahoot round questions will be similar to MATHCOUNTS state to MATHCOUNTS Nationals countdown round in difficulty.

Platform: This contest will be held virtually through Zoom. All competitors are required to have their cameras turned on at all times unless they have a reason for otherwise. Proctors and volunteers will be monitoring students at all times to prevent cheating and to create a fair environment for all students.

Prizes: At this moment, prizes are TBD, and more information will be provided and attached to this post as the competition date approaches. Rest assured, IndyINTEGIRLS has historically given out very generous cash prizes, and we intend on maintaining this generosity into our Spring Competition.

Contact & Connect With Us: Follow us on Instagram @indy.integirls, join our Discord, follow us on TikTok @indy.integirls, and email us at indy@integirls.org.

---------
[center]Help Us Out

Please help us in sharing the news of this competition! Our amazing team of officers has worked very hard to provide this educational opportunity to as many students as possible, and we would appreciate it if you could help us spread the word!
12 replies
Indy_Integirls
May 11, 2025
tikachaudhuri
2 hours ago
Hard Function
johnlp1234   4
N 2 hours ago by jasperE3
f:R+--->R+:
f(x^3+f(y))=y+(f(x))^3
4 replies
johnlp1234
Jul 7, 2020
jasperE3
2 hours ago
2016 Sets
NormanWho   111
N 6 hours ago by Amkan2022
Source: 2016 USAJMO 4
Find, with proof, the least integer $N$ such that if any $2016$ elements are removed from the set ${1, 2,...,N}$, one can still find $2016$ distinct numbers among the remaining elements with sum $N$.
111 replies
NormanWho
Apr 20, 2016
Amkan2022
6 hours ago
camp/class recommendations for incoming freshman
walterboro   14
N 6 hours ago by jb2015007
hi guys, i'm about to be an incoming freshman, does anyone have recommendations for classes to take next year and camps this summer? i am sure that i can aime qual but not jmo qual yet. ty
14 replies
walterboro
May 10, 2025
jb2015007
6 hours ago
Metamorphosis of Medial and Contact Triangles
djmathman   102
N Yesterday at 8:40 PM by Mathandski
Source: 2014 USAJMO Problem 6
Let $ABC$ be a triangle with incenter $I$, incircle $\gamma$ and circumcircle $\Gamma$. Let $M,N,P$ be the midpoints of sides $\overline{BC}$, $\overline{CA}$, $\overline{AB}$ and let $E,F$ be the tangency points of $\gamma$ with $\overline{CA}$ and $\overline{AB}$, respectively. Let $U,V$ be the intersections of line $EF$ with line $MN$ and line $MP$, respectively, and let $X$ be the midpoint of arc $BAC$ of $\Gamma$.

(a) Prove that $I$ lies on ray $CV$.

(b) Prove that line $XI$ bisects $\overline{UV}$.
102 replies
djmathman
Apr 30, 2014
Mathandski
Yesterday at 8:40 PM
Never seen this before
62861   65
N Mar 1, 2022 by franzliszt
Source: 2017 AMC 10B #19, 12B #15
Let $ABC$ be an equilateral triangle. Extend side $\overline{AB}$ beyond $B$ to a point $B'$ so that $BB' = 3AB$. Similarly, extend side $\overline{BC}$ beyond $C$ to a point $C'$ so that $CC' = 3BC$, and extend side $\overline{CA}$ beyond $A$ to a point $A'$ so that $AA' = 3CA$. What is the ratio of the area of $\triangle A'B'C'$ to the area of $\triangle ABC$?

$\textbf{(A) }9:1\qquad\textbf{(B) }16:1\qquad\textbf{(C) }25:1\qquad\textbf{(D) }36:1\qquad\textbf{(E) }37:1$
65 replies
62861
Feb 16, 2017
franzliszt
Mar 1, 2022
Never seen this before
G H J
Source: 2017 AMC 10B #19, 12B #15
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
62861
3564 posts
#1 • 9 Y
Y by High, Generic_Username, acegikmoqsuwy2000, jkoj25, bowenying24, HWenslawski, Adventure10, Mango247, Rounak_iitr
Let $ABC$ be an equilateral triangle. Extend side $\overline{AB}$ beyond $B$ to a point $B'$ so that $BB' = 3AB$. Similarly, extend side $\overline{BC}$ beyond $C$ to a point $C'$ so that $CC' = 3BC$, and extend side $\overline{CA}$ beyond $A$ to a point $A'$ so that $AA' = 3CA$. What is the ratio of the area of $\triangle A'B'C'$ to the area of $\triangle ABC$?

$\textbf{(A) }9:1\qquad\textbf{(B) }16:1\qquad\textbf{(C) }25:1\qquad\textbf{(D) }36:1\qquad\textbf{(E) }37:1$
This post has been edited 2 times. Last edited by djmathman, Feb 16, 2017, 6:18 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
pigeonholeprinciple
32 posts
#2 • 4 Y
Y by rafa2be, phi_ftw1618, dstanz5, Adventure10
I used Law of Cosines to get E.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
reun
578 posts
#3 • 1 Y
Y by Adventure10
Is it E?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
thinkinavi
1677 posts
#4 • 1 Y
Y by Adventure10
reun wrote:
Is it E?

Yes
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ythomashu
6322 posts
#5 • 1 Y
Y by Adventure10
law of cosines makes it really easy. E
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
pandabear10
1075 posts
#6 • 2 Y
Y by Adventure10, Mango247
Indeed, Law of cosines. E.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
algebra_star1234
2467 posts
#7 • 2 Y
Y by Adventure10, Mango247
ythomashu wrote:
law of cosines makes it really easy. E

same
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mudkipswims42
8867 posts
#8 • 2 Y
Y by Adventure10, Mango247
This clearly is very original *wink wink*
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rafayaashary1
2541 posts
#9 • 2 Y
Y by Adventure10, Mango247
Alternatively, draw the centers of the two equilateral triangles, note that they coincide by symmetry, drop a perpendicular to the small triangle's sides from the center, connect it to a vertex of the large triangle and Pythag/30-60-90 bash. Or, draw a diagram and measure :P
This post has been edited 1 time. Last edited by rafayaashary1, Feb 16, 2017, 3:35 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
reaganchoi
5289 posts
#10 • 1 Y
Y by Adventure10
law of cosines and it was easy as repeated before
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
pi_Plus_45x23
2070 posts
#11 • 8 Y
Y by doitsudoitsu, WhaleVomit, phi_ftw1618, zac15SCASD, itised, DaniyalQazi2, Ultroid999OCPN, Adventure10
I hate geo so I skip all the geo and guess what the geo is literally trivial...
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Superwiz
1069 posts
#12 • 2 Y
Y by DaniyalQazi2, Adventure10
Let the side of the equilateral triangles be x. The side A'B' $= (3x)^2 + (4x)^2 - 24 x^2 \cos 120 = 37x^2$. Ratio of sides squared equals the radio of areas, so the ratio is $37:1$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
matongxu
22 posts
#13 • 3 Y
Y by FedeX333X, Adventure10, Mango247
Draw a scale diagram and note that the side length is slightly longer than 6 if the original was 1
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
62861
3564 posts
#14 • 1 Y
Y by Adventure10
Anyone remember what question number this was on 12B?

Also, this is true even if $\triangle ABC$ isn't equilateral. ;)
This post has been edited 1 time. Last edited by 62861, Feb 16, 2017, 3:46 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
benstein
310 posts
#15 • 1 Y
Y by Adventure10
NO LAW OF COSINES!!!!
Z K Y
G
H
=
a