Join our FREE webinar on May 1st to learn about managing anxiety.

Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
How many approaches you got? (A lot)
IAmTheHazard   84
N 2 minutes ago by User141208
Source: USAMO 2023/2
Let $\mathbb{R}^+$ be the set of positive real numbers. Find all functions $f \colon \mathbb{R}^+ \to \mathbb{R}^+$ such that, for all $x,y \in \mathbb{R}^+$,
$$f(xy+f(x))=xf(y)+2.$$
84 replies
1 viewing
IAmTheHazard
Mar 23, 2023
User141208
2 minutes ago
MasterScholar North Carolina Math Camp
Ruegerbyrd   5
N an hour ago by ohiorizzler1434
Is this legit? Worth the cost ($6500)? Program Fees Cover: Tuition, course materials, field trip costs, and housing and meals at Saint Mary's School.

"Themes:

1. From Number Theory and Special Relativity to Game Theory
2. Applications to Economics

Subjects Covered:

Number Theory - Group Theory - RSA Encryption - Game Theory - Estimating Pi - Complex Numbers - Quaternions - Topology of Surfaces - Introduction to Differential Geometry - Collective Decision Making - Survey of Calculus - Applications to Economics - Statistics and the Central Limit Theorem - Special Relativity"

website(?): https://www.teenlife.com/l/summer/masterscholar-north-carolina-math-camp/
5 replies
Ruegerbyrd
5 hours ago
ohiorizzler1434
an hour ago
Sequence
lgx57   8
N 3 hours ago by Vivaandax
$a_1=1,a_{n+1}=a_n+\frac{1}{a_n}$. Find the general term of $\{a_n\}$.
8 replies
lgx57
Apr 27, 2025
Vivaandax
3 hours ago
Inequlities
sqing   28
N 3 hours ago by DAVROS
Let $ a,b,c\geq 0 $ and $ a^2+ab+bc+ca=3 .$ Prove that$$\frac{1}{1+a^2}+ \frac{1}{1+b^2}+  \frac{1}{1+c^2} \geq \frac{3}{2}$$$$\frac{1}{1+a^2}+ \frac{1}{1+b^2}+ \frac{1}{1+c^2}-bc \geq -\frac{3}{2}$$
28 replies
sqing
Jul 19, 2024
DAVROS
3 hours ago
AMSP Combo 2 and Alg 2.5
idk12345678   4
N 4 hours ago by Bread10
Im gonna be taking Geo 2 and i was deciding if to take combo 2, alg2.5, both, or neither.

My main goal is to qualify for JMO in 10th grade(next yr). Ive done aops int c+p but i didnt fully understand everything.

Would combo 2 and/or alg 2 be good for jmo qual?
4 replies
idk12345678
Yesterday at 2:12 PM
Bread10
4 hours ago
Geometric inequality
ReticulatedPython   3
N 4 hours ago by ItalianZebra
Let $A$ and $B$ be points on a plane such that $AB=n$, where $n$ is a positive integer. Let $S$ be the set of all points $P$ such that $\frac{AP^2+BP^2}{(AP)(BP)}=c$, where $c$ is a real number. The path that $S$ traces is continuous, and the value of $c$ is minimized. Prove that $c$ is rational for all positive integers $n.$
3 replies
ReticulatedPython
Apr 22, 2025
ItalianZebra
4 hours ago
Olympiad Problems Correlation with Computational?
FuturePanda   8
N 4 hours ago by deduck
Hi everyone,

Recently I;ve started doing a lot of nice combo/algebra Olympiad problems(JMO, PAGMO, CMO, etc.) and I’ve got to say, it’s been pretty fun(I’m enjoying it!). I was wondering if doing Olympiad problems also helps increase computational abilities slightly. Currently I am doing 75% computational, 25% oly but if anyone has any expreience I want to switch it to 25% computational and 75% Olympiad, though I still want to have computational skills for ARML, AIME, SMT, BMT, HMMT, etc.

If anyone has any experience, please let me know!

Thank you so much in advance!
8 replies
FuturePanda
Apr 26, 2025
deduck
4 hours ago
Transformation of a cross product when multiplied by matrix A
Math-lover1   1
N Today at 1:02 AM by greenturtle3141
I was working through AoPS Volume 2 and this statement from Chapter 11: Cross Products/Determinants confused me.
[quote=AoPS Volume 2]A quick comparison of $|\underline{A}|$ to the cross product $(\underline{A}\vec{i}) \times (\underline{A}\vec{j})$ reveals that a negative determinant [of $\underline{A}$] corresponds to a matrix which reverses the direction of the cross product of two vectors.[/quote]
I understand that this is true for the unit vectors $\vec{i} = (1 \ 0)$ and $\vec{j} = (0 \ 1)$, but am confused on how to prove this statement for general vectors $\vec{v}$ and $\vec{w}$ although its supposed to be a quick comparison.

How do I prove this statement easily with any two 2D vectors?
1 reply
Math-lover1
Yesterday at 10:29 PM
greenturtle3141
Today at 1:02 AM
Geometry books
T.Mousavidin   4
N Today at 12:10 AM by compoly2010
Hello, I wanted to ask if anybody knows some good books for geometry that has these topics in:
Desargues's Theorem, Projective geometry, 3D geometry,
4 replies
T.Mousavidin
Yesterday at 4:25 PM
compoly2010
Today at 12:10 AM
trigonometric functions
VivaanKam   3
N Yesterday at 10:08 PM by aok
Hi could someone explain the basic trigonometric functions to me like sin, cos, tan etc.
Thank you!
3 replies
VivaanKam
Yesterday at 8:29 PM
aok
Yesterday at 10:08 PM
Inequalities
sqing   16
N Yesterday at 5:25 PM by martianrunner
Let $ a,b \in [0 ,1] . $ Prove that
$$\frac{a}{ 1-ab+b }+\frac{b }{ 1-ab+a } \leq 2$$$$ \frac{a}{ 1+ab+b^2 }+\frac{b }{ 1+ab+a^2 }+\frac{ab }{2+ab }  \leq 1$$$$\frac{a}{ 1-ab+b^2 }+\frac{b }{ 1-ab+a^2 }+\frac{1 }{1+ab  }\leq \frac{5}{2}$$$$\frac{a}{ 1-ab+b^2 }+\frac{b }{ 1-ab+a^2 }+\frac{1 }{1+2ab  }\leq \frac{7}{3}$$$$\frac{a}{ 1+ab+b^2 }+\frac{b }{ 1+ab+a^2 } +\frac{ab }{1+ab }\leq \frac{7}{6 }$$
16 replies
sqing
Apr 25, 2025
martianrunner
Yesterday at 5:25 PM
Geometry Angle Chasing
Sid-darth-vater   6
N Yesterday at 2:18 PM by sunken rock
Is there a way to do this without drawing obscure auxiliary lines? (the auxiliary lines might not be obscure I might just be calling them obscure)

For example I tried rotating triangle MBC 80 degrees around point C (so the BC line segment would now lie on segment AC) but I couldn't get any results. Any help would be appreciated!
6 replies
Sid-darth-vater
Apr 21, 2025
sunken rock
Yesterday at 2:18 PM
BABBAGE'S THEOREM EXTENSION
Mathgloggers   0
Yesterday at 12:18 PM
A few days ago I came across. this interesting result is someone interested in proving this.

$\boxed{\sum_{k=1}^{p-1} \frac{1}{k} \equiv \sum_{k=p+1}^{2p-1} \frac{1}{k} \equiv \sum_{k=2p+1}^{3p-1}\frac{1}{k} \equiv.....\sum_{k=p(p-1)+1}^{p^2-1}\frac{1}{k} \equiv 0(mod p^2)}$
0 replies
Mathgloggers
Yesterday at 12:18 PM
0 replies
N.S. condition of passing a fixed point for a function
Kunihiko_Chikaya   1
N Yesterday at 11:29 AM by Mathzeus1024
Let $ f(t)$ be a function defined in any real numbers $ t$ with $ f(0)\neq 0.$ Prove that on the $ x-y$ plane, the line $ l_t : tx+f(t) y=1$ passes through the fixed point which isn't on the $ y$ axis in regardless of the value of $ t$ if only if $ f(t)$ is a linear function in $ t$.
1 reply
Kunihiko_Chikaya
Sep 6, 2009
Mathzeus1024
Yesterday at 11:29 AM
USAM(inimize)OOO
277546   73
N Apr 25, 2025 by lpieleanu
Source: 2020 USOMO Problem 1
Let $ABC$ be a fixed acute triangle inscribed in a circle $\omega$ with center $O$. A variable point $X$ is chosen on minor arc $AB$ of $\omega$, and segments $CX$ and $AB$ meet at $D$. Denote by $O_1$ and $O_2$ the circumcenters of triangles $ADX$ and $BDX$, respectively. Determine all points $X$ for which the area of triangle $OO_1O_2$ is minimized.

Proposed by Zuming Feng
73 replies
277546
Jun 21, 2020
lpieleanu
Apr 25, 2025
USAM(inimize)OOO
G H J
Source: 2020 USOMO Problem 1
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
277546
1607 posts
#1 • 10 Y
Y by Mateoaops, mira74, Frestho, poplintos, samrocksnature, a_n, I_am_human, megarnie, Lamboreghini, Rounak_iitr
Let $ABC$ be a fixed acute triangle inscribed in a circle $\omega$ with center $O$. A variable point $X$ is chosen on minor arc $AB$ of $\omega$, and segments $CX$ and $AB$ meet at $D$. Denote by $O_1$ and $O_2$ the circumcenters of triangles $ADX$ and $BDX$, respectively. Determine all points $X$ for which the area of triangle $OO_1O_2$ is minimized.

Proposed by Zuming Feng
This post has been edited 1 time. Last edited by djmathman, Jun 22, 2020, 4:47 AM
Reason: problem author
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
budu
1515 posts
#2 • 16 Y
Y by trumpeter, mira74, OlympusHero, jeffisepic, franchester, Mobashereh, AMC_Kid, Frestho, Ultroid999OCPN, samrocksnature, centslordm, Reef334, Lamboreghini, Monoten, Rounak_iitr, Begli_I.
The answer is the point $X$ such that $\boxed{XC \perp AB}$.
[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(10cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(8); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -3.2243323376885145, xmax = 13.88365542137765, ymin = -5.922456616151421, ymax = 4.148826666177998;  /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0.); pen xdxdff = rgb(0.49019607843137253,0.49019607843137253,1.); 

draw((3.587052950465511,2.4419513357090383)--(1.3742018932134419,-0.516290160847325)--(5.476150330531299,-1.7643148616665305)--cycle, linewidth(1.)); 
draw((4.06117451276288,2.165255786734233)--(3.587052950465511,2.4419513357090383)--(1.3742018932134419,-0.516290160847325)--(2.2111745127628804,-1.004744213265767)--cycle, linewidth(1.5) + xdxdff); 
 /* draw figures */
draw((4.56,3.02)--(0.86,-3.32), linewidth(1.)); 
draw((0.86,-3.32)--(10.02,-3.52), linewidth(1.)); 
draw((10.02,-3.52)--(4.56,3.02), linewidth(1.)); 
draw(circle((5.476150330531299,-1.7643148616665305), 4.871242154081014), linewidth(1.)); 
draw((2.508651125842874,2.0987083836517533)--(10.02,-3.52), linewidth(1.)); 
draw(circle((3.587052950465511,2.4419513357090383), 1.1317094236094491), linewidth(1.)); 
draw(circle((1.3742018932134419,-0.516290160847325), 2.850472320361278), linewidth(1.)); 
draw((3.587052950465511,2.4419513357090383)--(1.3742018932134419,-0.516290160847325), linewidth(1.) + zzttqq); 
draw((1.3742018932134419,-0.516290160847325)--(5.476150330531299,-1.7643148616665305), linewidth(1.) + zzttqq); 
draw((5.476150330531299,-1.7643148616665305)--(3.587052950465511,2.4419513357090383), linewidth(1.) + zzttqq); 
draw((0.86,-3.32)--(2.508651125842874,2.0987083836517533), linewidth(1.)); 
draw((2.508651125842874,2.0987083836517533)--(4.56,3.02), linewidth(1.)); 
draw((4.06117451276288,2.165255786734233)--(3.587052950465511,2.4419513357090383), linewidth(1.) + xdxdff); 
draw((3.587052950465511,2.4419513357090383)--(1.3742018932134419,-0.516290160847325), linewidth(1.) + xdxdff); 
draw((1.3742018932134419,-0.516290160847325)--(2.2111745127628804,-1.004744213265767), linewidth(1.) + xdxdff); 
draw((2.2111745127628804,-1.004744213265767)--(4.06117451276288,2.165255786734233), linewidth(1.) + xdxdff); 
 /* dots and labels */
dot((4.56,3.02),dotstyle); 
label("$A$", (4.618661193674296,3.1666199996334985), NE * labelscalefactor); 
dot((0.86,-3.32),dotstyle); 
label("$B$", (0.7044943284894912,-3.210393432409147), dir(260) * 3); 
dot((10.02,-3.52),dotstyle); 
label("$C$", (10.072107163145256,-3.3716512433343633), dir(-50) * 1.5); 
dot((2.508651125842874,2.0987083836517533),dotstyle); 
label("$X$", (2.24377343277565,2.331011343021014), dir(90) * 0.2); 
dot((3.5623490255257604,1.310511573468466),linewidth(4.pt) + dotstyle); 
label("$D$", (3.724413333089003,1.334144875483313), dir(-108) * 2.95); 
dot((5.476150330531299,-1.7643148616665305),linewidth(4.pt) + dotstyle); 
label("$O$", (5.527568855252789,-1.6417947261365882), NE * labelscalefactor); 
dot((3.587052950465511,2.4419513357090383),linewidth(4.pt) + dotstyle); 
label("$O_1$", (3.651114328122995,2.565568158912238), dir(120) * 2.35); 
dot((1.3742018932134419,-0.516290160847325),linewidth(4.pt) + dotstyle); 
label("$O_2$", (1.437484378149567,-0.395711641714462), dir(135) * 0.7); 
dot((4.06117451276288,2.165255786734233),linewidth(4.pt) + dotstyle); 
label("$M$", (4.120227959905444,2.2870319400414094), dir(-60) * 1.5); 
dot((2.2111745127628804,-1.004744213265767),linewidth(4.pt) + dotstyle); 
label("$N$", (2.273093034762053,-0.8941448754833125), dir(-60) * 1.5); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
Note that the radical axis of two non-concentric circles is perpendicular to the line connecting their centers, so
$$XA \perp OO_1, \quad XB \perp OO_2, \quad XD \perp O_1 O_2. $$This means
$$\measuredangle (\overline{O_1 O_2}, \overline{O_1 O}) = \measuredangle (\overline{XD}, \overline{XA}) = \measuredangle CXA = \measuredangle CBA,$$$$\measuredangle (\overline{O_2 O}, \overline{O_2 O_1}) = \measuredangle (\overline{XB}, \overline{XD}) = \measuredangle BXC = \measuredangle BAC$$so $\Delta O O_1 O_2 \sim \Delta CBA$. Thus, all possible $\Delta O O_1 O_2$ are similar to each other, so it suffices to minimize $O_1 O_2$.

Let $M,N$ be the midpoints of $AD,BD$. Note that
$$O_1 M, O_2 N \perp MN \implies O_1 O_2 \geq MN$$with equality holding if $O_1 O_2 NM$ is a rectangle. In this case, $O_1 O_2 \parallel MN$, and since $O_1 O_2 \perp XD$, this is equivalent to $XC \perp AB$. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rd123
473 posts
#3 • 2 Y
Y by AMC_Kid, samrocksnature
[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(14cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -9.19, xmax = 12.01, ymin = -8.64, ymax = 5.6;  /* image dimensions */
pen qqffff = rgb(0,1,1); 
 /* draw figures */
draw(circle((1.1296663605334942,-1.841279453894974), 5.019806191877154), linewidth(0.8) + red); 
draw((-0.63,2.86)--(-2.37,-5.44), linewidth(0.8)); 
draw((-2.37,-5.44)--(4.67,-5.4), linewidth(0.8)); 
draw((4.67,-5.4)--(-0.63,2.86), linewidth(0.8)); 
draw((-3.593868592709285,-0.142258633097903)--(4.67,-5.4), linewidth(0.8)); 
draw(circle((-1.5469223379724755,0.8010835629503406), 2.2538596825503965), linewidth(0.8) + green); 
draw(circle((-3.978946076657836,-3.0214560388192346), 2.9048343102071406), linewidth(0.8) + qqffff); 
draw((-1.5469223379724755,0.8010835629503406)--(1.1296663605334942,-1.841279453894974), linewidth(0.8)); 
draw((1.1296663605334942,-1.841279453894974)--(-3.978946076657836,-3.0214560388192346), linewidth(0.8)); 
draw((-3.978946076657836,-3.0214560388192346)--(-1.5469223379724755,0.8010835629503406), linewidth(0.8)); 
draw((-3.593868592709285,-0.142258633097903)--(-0.63,2.86), linewidth(0.8)); 
draw((-3.593868592709285,-0.142258633097903)--(-2.37,-5.44), linewidth(0.8)); 
draw((-2.1119342963546424,1.3588706834510484)--(-1.5469223379724755,0.8010835629503406), linewidth(0.8)); 
 /* dots and labels */
dot((-0.63,2.86),dotstyle); 
label("$A$", (-0.55,3.06), NE * labelscalefactor); 
dot((-2.37,-5.44),dotstyle); 
label("$B$", (-2.53,-5.84), NE * labelscalefactor); 
dot((4.67,-5.4),dotstyle); 
label("$C$", (4.75,-5.7), NE * labelscalefactor); 
dot((-3.593868592709285,-0.142258633097903),dotstyle); 
label("$X$", (-4.01,-0.08), NE * labelscalefactor); 
dot((-1.534116523752646,-1.452739739739633),linewidth(4pt) + dotstyle); 
label("D", (-1.41,-1.36), NE * labelscalefactor); 
dot((-1.5469223379724755,0.8010835629503406),linewidth(4pt) + dotstyle); 
label("$O_1$", (-1.69,0.28), NE * labelscalefactor); 
dot((-3.978946076657836,-3.0214560388192346),linewidth(4pt) + dotstyle); 
label("$O_2$", (-4.27,-3.44), NE * labelscalefactor); 
dot((1.1296663605334942,-1.841279453894974),linewidth(4pt) + dotstyle); 
label("$O$", (1.21,-1.68), NE * labelscalefactor); 
dot((-2.1119342963546424,1.3588706834510484),linewidth(4pt) + dotstyle); 
label("$M_{1}$", (-1.93,1.24), NE * labelscalefactor); 
dot((-2.9819342963546425,-2.7911293165489517),linewidth(4pt) + dotstyle); 
label("$M_{2}$", (-2.85,-3.08), NE * labelscalefactor); 
dot((-2.5639925582309653,-0.797499186418768),linewidth(4pt) + dotstyle); 
label("$M$", (-2.63,-1.22), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]

Denote the midpoints of $AX,BX,DX$ by $M_1,M_2,M$ respectively.

Note that $\measuredangle OO_1O_2 = \measuredangle OO_1M = \measuredangle M_1O_1M = \measuredangle M_1XM= \measuredangle AXC = \measuredangle ABC$, and similarly $\measuredangle OO_2O_1 = \measuredangle BAC$, so $\triangle ABC \sim \triangle O_2O_1O$. Thus, we just aim to minimize $O_1O_2$.

Note that $\angle XO_1O_2 = \angle XO_1M = \angle XAD = \angle XAB$, and similarly $\angle XO_2O_1 = \angle XBA$, so $\triangle XO_1O_2 \sim XAB$. Thus, we have:
\begin{align*}
\dfrac{O_1O_2}{XO_1} &= \dfrac{AB}{XA} \\
O_1O_2 &= \dfrac{XO_1 \times AB}{XA} \\
O_1O_2 &= \dfrac{AB}{2\sin(\angle XO_1M)} \\
O_1O_2 &= \dfrac{AB}{2\sin(\angle XDA)},
\end{align*}which is minimized when $\angle XDA=90^\circ,$ or when $CX \perp AB$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Overlord123
799 posts
#4 • 1 Y
Y by samrocksnature
its 6:59 where i am
EDIT: nvm lol its 7 rn...
This post has been edited 1 time. Last edited by Overlord123, Jun 21, 2020, 11:00 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AOPS12142015
1448 posts
#5 • 2 Y
Y by samrocksnature, Danielzh
We claim that $[OO_1O_2]$ is minimized when $CX \perp AB$ (i.e. when $D$ is the foot of the altitude).

[asy]
import graph; size(10cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -3.704186819681157, xmax = 13.20119063123603, ymin = -4.589661795987416, ymax = 5.840571082632438;  /* image dimensions */
pen qqwwtt = rgb(0,0.4,0.2); pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); pen dtsfsf = rgb(0.8274509803921568,0.1843137254901961,0.1843137254901961); pen ccwwff = rgb(0.8,0.4,1); 

draw((4.020890197618199,4.998461300260606)--(0,0)--(7,0)--cycle, linewidth(2) + qqwwtt); 
draw((3.5,1.300994564817335)--(1.3602695664046482,-0.8107279732157674)--(4.860269566404648,-1.7212539237905704)--cycle, linewidth(2) + qqwwtt); 
 /* draw figures */
draw((4.020890197618199,4.998461300260606)--(0,0), linewidth(2) + qqwwtt); 
draw((0,0)--(7,0), linewidth(2) + qqwwtt); 
draw((7,0)--(4.020890197618199,4.998461300260606), linewidth(2) + qqwwtt); 
draw(circle((3.5,1.300994564817335), 3.733977350987047), linewidth(2) + wrwrwr); 
draw((4.020890197618199,4.998461300260606)--(2.153005471018376,-2.1815609044577515), linewidth(2) + wrwrwr); 
draw(circle((1.3602695664046482,-0.8107279732157674), 1.5835444862210963), linewidth(2) + wrwrwr); 
draw(circle((4.860269566404648,-1.7212539237905704), 2.746117513621474), linewidth(2) + wrwrwr); 
draw((1.3602695664046482,-0.8107279732157674)--(4.860269566404648,-1.7212539237905704), linewidth(2) + qqwwtt); 
draw((4.860269566404648,-1.7212539237905704)--(3.5,1.300994564817335), linewidth(2) + qqwwtt); 
draw((0,0)--(2.153005471018376,-2.1815609044577515), linewidth(3.6) + dtsfsf); 
draw((2.153005471018376,-2.1815609044577515)--(7,0), linewidth(3.6) + dtsfsf); 
draw(circle((1.7566375187115124,-1.4961444388367593), 0.7917722431105482), linewidth(2) + ccwwff); 
draw(circle((3.506637518711512,-1.9514074141241615), 1.3730587568107366), linewidth(2) + ccwwff); 
draw((1.076502735509188,-1.0907804522288757)--(3.5,1.300994564817335), linewidth(2) + qqwwtt); 
 /* dots and labels */
dot((0,0),dotstyle); 
label("$A$", (-0.2478596493331816,0.08294253050839115), NW * labelscalefactor); 
dot((4.020890197618199,4.998461300260606),dotstyle); 
label("$C$", (4.1184878392836275,5.105554671722985), NE * labelscalefactor); 
dot((7,0),dotstyle); 
label("$B$", (7.102304459761247,0.09169272587636083), NE * labelscalefactor); 
dot((3.5,1.300994564817335),linewidth(4pt) + dotstyle); 
label("$O$", (3.5322247496296675,1.3692212495999336), NE * labelscalefactor); 
dot((2.153005471018376,-2.1815609044577515),dotstyle); 
label("$X$", (2.1846946629623556,-2.095856116116058), NE * labelscalefactor); 
dot((2.7205391328092965,0),linewidth(4pt) + dotstyle); 
label("$D$", (2.753457361880377,0.07419233514042148), NE * labelscalefactor); 
dot((1.3602695664046482,-0.8107279732157674),linewidth(4pt) + dotstyle); 
label("$O_1$", (1.3359257122693084,-0.643323685033092), N * labelscalefactor); 
dot((4.860269566404648,-1.7212539237905704),linewidth(4pt) + dotstyle); 
label("$O_2$", (4.958506594608705,-1.6495961523496047), NE * labelscalefactor); 
dot((1.076502735509188,-1.0907804522288757),linewidth(4pt) + dotstyle); 
label("$M$", (1.029668874390374,-0.9408303275440609), NW * labelscalefactor); 
dot((4.576502735509188,-1.0907804522288757),linewidth(4pt) + dotstyle); 
label("$N$", (4.608498779889923,-1.019582085855788), NE * labelscalefactor); 
dot((2.4367723019138365,-1.0907804522288757),linewidth(4pt) + dotstyle); 
label("$I$", (2.473451110105351,-1.019582085855788), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 [/asy]

Lemma: $\triangle O_1OO_2 \sim BCA.$
Proof: Let $M$ and $N$ denote the midpoints of $\overline{AX}$ and $\overline{BX},$ respectively, and let $I$ denote the intersection of $\overline{O_1O_2}$ and $\overline{CX}.$ WLOG suppose $\angle ADX$ is acute (and $\angle BDX$ acute). Then, quadrilateral $MO_1IX$ is cyclic, so $$ \angle ABC = \angle AXC = 180^{\circ} - \angle MO_1I = \angle OO_1O_2,$$where $M, O_1, O$ are collinear due to symmetry in $\triangle AOX.$ Similarly, quadrilateral $NO_2XI$ is cyclic, so $$\angle BAC = \angle BXC = \angle OO_2O_1.$$Moreover, quadrilateral $MONX$ is cyclic, so $\angle O_1OO_2 = 180^{\circ}-\angle MXN = \angle ACB.$ Since all three angles are congruent, we have $\triangle O_1OO_2 \sim \triangle BCA,$ as desired.

Lemma: $[O_1OO_2]$ is minimized when $M=O_1$ and $N=O_2.$
Proof: Let $F_1$ and $F_2$ denote the feet of the perpendiculars from $O_1$ and $O_2$ onto $\overline{AB},$ respectively. Then, $$O_1O_2 \geq F_1F_2,$$with equality achieved when $\overline{F_1F_2} \parallel \overline{O_1O_2}.$ This occurs when $M=O_1$ and $N=O_2,$ as desired.

Since $\triangle O_1OO_2 \sim \triangle BCA,$ it suffices to minimize $O_1O_2.$ This simply happens when $O_1O_2 = MN$ (i.e. when $\angle ADX = \angle BDX = 90^{\circ}$), so we are done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
trumpeter
3332 posts
#6 • 6 Y
Y by samrocksnature, centslordm, Mango247, Mango247, Mango247, dbnl
[asy]
size(6cm);
pair A=dir(270-58), B=dir(270+58), C=dir(90+27);
pair O=(0,0), X=dir(270-19), D=extension(C,X,A,B), O1=circumcenter(A,D,X), O2=circumcenter(B,D,X);
pair P1=foot(D,A,X), P2=foot(D,B,X);
fill(O--O1--O2--cycle,rgb(230,255,242));
draw(A--B--C--cycle); draw(X--A); draw(X--B); draw(X--C);
draw(O--O1,blue+dashed); draw(O--O2,blue+dashed); draw(O1--O2,blue+dotted); draw(D--P1,purple+dotted); draw(D--P2,purple+dotted); draw(P1--P2,purple+dotted);
draw(circumcircle(A,B,C)); draw(circumcircle(A,D,X)); draw(circumcircle(B,D,X));
dot(A); dot(B); dot(C); dot(O); dot(X); dot(D); dot(O1); dot(O2); dot(P1); dot(P2);
label("$A$",A,dir(185)); label("$B$",B,B); label("$C$",C,C); label("$O$",O,dir(120)); label("$X$",X+(0,-0.05),dir(270)); label("$D$",D,dir(40));
[/asy]
Note that $O_1O\perp AX$ and $O_2O\perp BX$. Using directed angles modulo $\pi$,
\[
	\measuredangle{O_1OO_2}=\measuredangle{(O_1O,O_2O)}=\measuredangle{(AX,BX)}=\measuredangle{ACB}.
\]Let $P_1,P_2$ be the feet from $D$ to $AX,BX$; by a similar argument, $\measuredangle{P_1DP_2}=\measuredangle{ACB}$.

From $\measuredangle{O_1OO_2}=\measuredangle{ACB}$, it suffices to minimize $OO_1\cdot OO_2$. Let $\rho$ denote unsigned power.

Claim. \[
		OO_1=\frac{\rho(D,\omega)}{2DP_1}\quad\text{and}\quad OO_2=\frac{\rho(D,\omega)}{2DP_2}
	\]Proof. We proceed using complex numbers with $\omega$ as the unit circle. The circumcenter of $\triangle{ADX}$ is at
\[
		\frac{
			\begin{vmatrix}
				a & 1 & 1 \\
				d & |d|^2 & 1 \\
				x & 1 & 1
			\end{vmatrix}
		}{
			\begin{vmatrix}
				a & a^{-1} & 1 \\
				d & d^{-1} & 1 \\
				x & x^{-1} & 1
			\end{vmatrix}
		}
		=
		\frac{
			\begin{vmatrix}
				a & 0 & 1 \\
				d & |d|^2-1 & 1 \\
				x & 0 & 1
			\end{vmatrix}
		}{
			\begin{vmatrix}
				a & a^{-1} & 1 \\
				d & d^{-1} & 1 \\
				x & x^{-1} & 1
			\end{vmatrix}
		}
		=
		\frac{(|d|^2-1)(a-x)}{\frac{4}{i}[ADX]}.
	\]Taking the magnitude, we have that
\[
		OO_1=\frac{\rho(D,\omega)\cdot AX}{4[ADX]}=\frac{\rho(D,\omega)}{2DP_1}
	\]as desired. The other result follows by symmetry. $\square$

Note that
\[
	\frac{1}{2}DP_1\cdot DP_2\cdot\sin\angle{C}=[DP_1P_2]=\frac{\rho(D,\omega)\cdot[XAB]}{4R^2}
\]since $\triangle{DP_1P_2}$ is the pedal triangle of $D$ w.r.t. $\triangle{XAB}$. Then
\[
	OO_1\cdot OO_2\propto\frac{\rho(D,\omega)^2}{DP_1\cdot DP_2}\propto\frac{\rho(D,\omega)}{[XAB]}\propto\frac{DA\cdot DB}{XA\cdot XB}=\frac{\sin\angle{DXA}}{\sin\angle{XDA}}\cdot\frac{\sin\angle{DXB}}{\sin\angle{XDB}}=\frac{\sin\angle{B}\sin\angle{A}}{\sin^2{\angle{ADX}}}
\]so it suffices to maximize $\sin\angle{ADX}$. This occurs when $CX\perp AB$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
spartacle
538 posts
#7 • 11 Y
Y by mira74, k12byda5h, IAmTheHazard, samrocksnature, tigerzhang, ike.chen, khina, EpicBird08, Jack_w, ihatemath123, Funcshun840
So, uh... why is there a C-labeled problem?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
franchester
1487 posts
#8 • 1 Y
Y by samrocksnature
I claim that $X$ is the unique point that satisfies $CX\perp AB$.

The main claim is that $\triangle OXO_1 \sim\triangle CAD$ and $\triangle OXO_2\sim \triangle CBD$. By radical axes, we have that $OO_1$ and $OO_2$ perpendicularly bisect $AX$ and $BX$, respectively. Using the fact that $\triangle OAX$ and $\triangle OBX$ are isosceles, \[\angle XOO_1=\frac{1}{2}\angle XOA=\frac{1}{2}(2\angle XCA)=\angle XCA=\angle DCA\]\[\angle XOO_2=\frac{1}{2} \angle XOB=\frac{1}{2}(2\angle XCB)=\angle XCB=\angle DCB\]
Now, let $\angle BDX=\theta$. Suppose that $\theta$ is acute for now, the obtuse case follows similarly. If $\angle BDX$ is acute, then $\triangle ADX$ is obtuse and $\triangle BDX$ is acute, meaning $O_1$ lies outside of the triangle and $O_2$ lies inside. Using the relation between central angles and inscribed angles, \[360^{\circ}-\angle AO_1X=2(\angle ADX)=2(180^{\circ}-\theta)=360^{\circ}-2\theta \implies \angle AO_1X=2\theta\]and $\angle BO_2X=2\angle BDX=2\theta$. Since $OO_1$ and $OO_2$ perpendicularly bisect $AX$ and $BX$, \[\angle OO_1X=\frac{1}{2}\angle AO_1X=\theta=\angle BDX=\angle CDA\]\[\angle OO_2X=180^{\circ}-\frac{1}{2}\angle XO_2B=180^{\circ}-\theta=\angle XDA=\angle CDB\]which combined with $\angle XOO_1=\angle  DCA$ and $\angle XOO_2=\angle DCB$ gives $\triangle OXO_1\sim \triangle CAD$ and $\triangle OXO_2\sim \triangle CBD$, as claimed.

We have that $[OO_1O_2]=\frac{1}{2}OO_1\cdot OO_2\sin(\angle O_1OO_2)$. Note that $\angle O_1OO_2=\angle O_1OX+\angle XOO_2=\angle DCA+\angle BCD=\angle ACB$, or $\angle O_1OO_2$ is fixed. Since $\frac{1}{2}\sin(\angle O_1OO_2)$ is fixed, it suffices to minimize $OO_1\cdot OO_2$.

Using similarity ratios, $\frac{OO_1}{OX}=\frac{CD}{CA}$ and $\frac{OO_2}{OX}=\frac{CD}{CB}$. Thus, \[OO_1\cdot OO_2=\frac{OX^2\cdot CD^2}{CA\cdot CB}\]Clearly $CA\cdot CB$ is fixed since $\triangle ABC$ is fixed, but also note that $OX^2$ is fixed since $OX$ is simply the radius of $(ABC)$. This means minimizing $[OO_1O_2]$ is equivalent to minimizing $CD^2$, or $CD$ since $CD>0$. This occurs when $CD$ is the altitude from $C$ to $AB$, or $CX\perp AB$, as claimed.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
WarriorKid
4133 posts
#9 • 3 Y
Y by Ha_ha_ha, samrocksnature, a_n
dont tell me that you guys wrote that solution and drew the asymptote that fast
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
hwl0304
1840 posts
#10 • 1 Y
Y by samrocksnature
Solution using trig:

I claim that the answer is \(X\) such that \(CX\perp AB.\) Use directed angles when necessary.

First observe that \(\measuredangle O_1OO_2=\measuredangle AOB\) is constant, so by the area formula \([OO_1O_2]=\frac12 OO_1\cdot OO2 \cdot \sin \measuredangle OO_1O_2,\) it suffices to minimize \(OO_1\cdot OO_2.\)

We now show \(\measuredangle OXO_2\) is constant. Indeed, \(\measuredangle OXO_2=-\measuredangle XO_2O-\measuredangle O_2OX=-\measuredangle XDA-\measuredangle DAX=\measuredangle AXD=\measuredangle ABC.\) By symmetry, this shows \(\measuredangle OXO_1\) is constant as well.

By law of sines, \(OO_1\cdot OO_2=\frac{OX\cdot \sin \measuredangle OXO_1}{\sin \measuredangle OO_1X}\cdot \frac{OX\cdot \sin \measuredangle OXO_2}{\sin \measuredangle OO_2X},\) and the numerator is constant. Furthermore, \(\measuredangle OO_1X=\measuredangle ADC\) and \(\measuredangle OO_2X=\measuredangle BDC,\) so we wish to minimize \(\frac{1}{\sin \measuredangle ADC\cdot \sin \measuredangle BDC}.\) This occurs when \(\sin \measuredangle ADC=\sin \measuredangle BDC=1\) or \(CD\perp AB,\) as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathisawesome2169
1823 posts
#11 • 1 Y
Y by samrocksnature
bad trig bash outline
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
277546
1607 posts
#12 • 1 Y
Y by samrocksnature
Pure angle chase outline:
Show $\triangle{OO_1O_2} \sim \triangle{CBA}$ by extending $OO_1$ to meet $AX$ at $U$ and $OO_2$ to meet $BX$ at $V$ and note $OUXV$ is cyclic so then you get a free angle. Some more angle chase to get $\angle{CBA}=\angle{O_1OO_2}$. So to minimize we just need to minimize $CD$ (the cevian) so we show $\triangle{OO_1A} \sim \angle{CDA}$ through more boring angle chase. So the minimum occurs when $CD$ is minimized or when its the projection. So intersection of $CH$ and $(ABC)$ is it.
This post has been edited 1 time. Last edited by 277546, Jun 21, 2020, 11:10 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jeff10
1117 posts
#13 • 3 Y
Y by Lcz, superagh, samrocksnature
Short
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MP8148
888 posts
#14 • 1 Y
Y by samrocksnature
[asy]
size(8cm);
defaultpen(fontsize(10pt));

pair C = dir(120), A = dir(210), B = dir(330), O = origin, X = dir(290), D = extension(C,X,A,B), O1 = circumcenter(A,D,X), O2 = circumcenter(B,D,X);

draw(unitcircle^^X--C--B--A^^O1--O2);
draw(circumcircle(A,D,X)^^circumcircle(B,D,X), gray);
draw(A--X--B^^O1--X--O2, magenta);
draw(A--C--B^^O2--O--O1, heavygreen);

dot("$A$", A, dir(180));
dot("$B$", B, dir(0));
dot("$C$", C, dir(120));
dot("$D$", D, dir(60));
dot("$X$", X, dir(285));
dot("$O$", O, dir(90));
dot("$O_1$", O1, dir(210));
dot("$O_2$", O2, dir(15));
[/asy]
I claim that $X \in \omega$ is the unique point such that $\overline{CX} \perp \overline{AB}$.

Claim: $\triangle OO_1O_2 \sim \triangle CBA$.

Proof. Since $\overline{OO_1}$ is the perpendicular bisector of $\overline{AX}$ and $\overline{O_1O_2}$ is the perpendicular bisector of $\overline{DX}$, we have $$\angle OO_1O_2 = \angle(\overline{OO_1},\overline{O_1O_2}) = \angle(\overline{AX},\overline{CX}) = \angle CXA = \angle CBA.$$Similarly $\angle OO_2O_1 = \angle CAB$ and the conclusion follows. $\square$

Thus, we just need to minimize $O_1O_2$. It is well known that $\triangle XO_1O_2 \sim \triangle XAB$. Then by the Extended Law of Sines, we have $$O_1O_2 = AB \cdot \dfrac{XO_1}{XA} = \dfrac{AB}{2 \sin(\overline{CX}, \overline{AB})}.$$Since $AB$ is constant, this is minimized when $k = \sin(\overline{CX}, \overline{AB})$ is maximized, which occurs when $k=1$ i.e. $\overline{CX} \perp \overline{AB}$ as desired. $\blacksquare$
This post has been edited 3 times. Last edited by MP8148, Jun 22, 2020, 12:41 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Tommy2002
81 posts
#15 • 2 Y
Y by samrocksnature, Danielzh
Note that altitude from $O$ to $O_1O_2$ is $\frac{CD}2$, and $\triangle OO_1O_2$ is similar to $\triangle ABC$. Thus just minimize $CD$, which is when it's the altitude.
Z K Y
G
H
=
a