Stay ahead of learning milestones! Enroll in a class over the summer!

Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
camp/class recommendations for incoming freshman
walterboro   8
N an hour ago by lu1376091
hi guys, i'm about to be an incoming freshman, does anyone have recommendations for classes to take next year and camps this summer? i am sure that i can aime qual but not jmo qual yet. ty
8 replies
1 viewing
walterboro
May 10, 2025
lu1376091
an hour ago
Goals for 2025-2026
Airbus320-214   114
N 2 hours ago by Soupboy0
Please write down your goal/goals for competitions here for 2025-2026.
114 replies
2 viewing
Airbus320-214
May 11, 2025
Soupboy0
2 hours ago
Cyclic Quad
worthawholebean   130
N 2 hours ago by Mathandski
Source: USAMO 2008 Problem 2
Let $ ABC$ be an acute, scalene triangle, and let $ M$, $ N$, and $ P$ be the midpoints of $ \overline{BC}$, $ \overline{CA}$, and $ \overline{AB}$, respectively. Let the perpendicular bisectors of $ \overline{AB}$ and $ \overline{AC}$ intersect ray $ AM$ in points $ D$ and $ E$ respectively, and let lines $ BD$ and $ CE$ intersect in point $ F$, inside of triangle $ ABC$. Prove that points $ A$, $ N$, $ F$, and $ P$ all lie on one circle.
130 replies
1 viewing
worthawholebean
May 1, 2008
Mathandski
2 hours ago
Something weird with this one FE in integers (probably challenging, maybe not)
Gaunter_O_Dim_of_math   1
N 2 hours ago by Rayanelba
Source: Pang-Cheng-Wu, FE, problem number 52.
During FE problems' solving I found a very specific one:

Find all such f that f: Z -> Z and for all integers a, b, c
f(a^3 + b^3 + c^3) = f(a)^3 + f(b)^3 + f(c)^3.

Everything what I've got is that f is odd, f(n) = n or -n or 0
for all n from 0 to 11 (just bash it), but it is very simple and do not give the main idea.
I actually have spent not so much time on this problem, but definitely have no clue. As far as I see, number theory here or classical FE solving or advanced methods, which I know, do not work at all.
Is here a normal solution (I mean, without bashing and something with a huge number of ugly and weird inequalities)?
Or this is kind of rubbish, which was put just for bash?
1 reply
Gaunter_O_Dim_of_math
4 hours ago
Rayanelba
2 hours ago
USAMO 1985 #2
Mrdavid445   6
N 2 hours ago by anticodon
Determine each real root of \[x^4-(2\cdot10^{10}+1)x^2-x+10^{20}+10^{10}-1=0\]correct to four decimal places.
6 replies
Mrdavid445
Jul 26, 2011
anticodon
2 hours ago
Inequality with rational function
MathMystic33   3
N 3 hours ago by ariopro1387
Source: Macedonian Mathematical Olympiad 2025 Problem 2
Let \( n > 2 \) be an integer, \( k > 1 \) a real number, and \( x_1, x_2, \ldots, x_n \) be positive real numbers such that \( x_1 \cdot x_2 \cdots x_n = 1 \). Prove that:

\[
\frac{1 + x_1^k}{1 + x_2} + \frac{1 + x_2^k}{1 + x_3} + \cdots + \frac{1 + x_n^k}{1 + x_1} \geq n.
\]
When does equality hold?
3 replies
MathMystic33
Today at 5:42 PM
ariopro1387
3 hours ago
k A cyclic weighted inequality
MathMystic33   2
N 4 hours ago by grupyorum
Source: 2024 Macedonian Team Selection Test P2
Let $u,v,w$ be positive real numbers. Prove that there exists a cyclic permutation $(x,y,z)$ of $(u,v,w)$ such that for all positive real numbers $a,b,c$ the following holds:
\[
\frac{a}{x\,a + y\,b + z\,c}
\;+\;
\frac{b}{x\,b + y\,c + z\,a}
\;+\;
\frac{c}{x\,c + y\,a + z\,b}
\;\ge\;
\frac{3}{x + y + z}.
\]
2 replies
MathMystic33
4 hours ago
grupyorum
4 hours ago
k Perfect squares imply GCD is a perfect square
MathMystic33   1
N 4 hours ago by grupyorum
Source: 2024 Macedonian Team Selection Test P6
Let \(a,b\) be positive integers such that \(a+1\), \(b+1\), and \(ab\) are perfect squares. Prove that $\gcd(a,b)+1$ is also a perfect square.
1 reply
MathMystic33
4 hours ago
grupyorum
4 hours ago
Divisibility condition with primes
MathMystic33   1
N 4 hours ago by grupyorum
Source: 2024 Macedonian Team Selection Test P1
Let \(p,p_2,\dots,p_k\) be distinct primes and let \(a_2,a_3,\dots,a_k\) be nonnegative integers. Define
\[
m \;=\;
\frac12
\Bigl(\prod_{i=2}^k p_i^{a_i}\Bigr)
\Bigl(\prod_{i=1}^k(p_i+1)\;+\;\sum_{i=1}^k(p_i-1)\Bigr),
\]\[
n \;=\;
\frac12
\Bigl(\prod_{i=2}^k p_i^{a_i}\Bigr)
\Bigl(\prod_{i=1}^k(p_i+1)\;-\;\sum_{i=1}^k(p_i-1)\Bigr).
\]Prove that
\[
p^2-1 \;\bigm|\; p\,m \;-\; n.
\]
1 reply
MathMystic33
4 hours ago
grupyorum
4 hours ago
Non-homogeneous degree 3 inequality
Lukaluce   4
N 4 hours ago by Nuran2010
Source: 2024 Junior Macedonian Mathematical Olympiad P1
Let $a, b$, and $c$ be positive real numbers. Prove that
\[\frac{a^4 + 3}{b} + \frac{b^4 + 3}{c} + \frac{c^4 + 3}{a} \ge 12.\]When does equality hold?

Proposed by Petar Filipovski
4 replies
Lukaluce
Apr 14, 2025
Nuran2010
4 hours ago
Circumcircle of MUV tangent to two circles at once
MathMystic33   1
N 4 hours ago by ariopro1387
Source: Macedonian Mathematical Olympiad 2025 Problem 1
Given is an acute triangle \( \triangle ABC \) with \( AB < AC \). Let \( M \) be the midpoint of side \( BC \), and let \( X \) and \( Y \) be points on segments \( BM \) and \( CM \), respectively, such that \( BX = CY \). Let \( \omega_1 \) be the circumcircle of \( \triangle ABX \), and \( \omega_2 \) the circumcircle of \( \triangle ACY \). The common tangent \( t \) to \( \omega_1 \) and \( \omega_2 \), which lies closer to point \( A \), touches \( \omega_1 \) and \( \omega_2 \) at points \( P \) and \( Q \), respectively. Let the line \( MP \) intersect \( \omega_1 \) again at \( U \), and the line \( MQ \) intersect \( \omega_2 \) again at \( V \). Prove that the circumcircle of triangle \( \triangle MUV \) is tangent to both \( \omega_1 \) and \( \omega_2 \).
1 reply
MathMystic33
Today at 5:40 PM
ariopro1387
4 hours ago
[MAIN ROUND STARTS MAY 17] OMMC Year 5
DottedCaculator   44
N 4 hours ago by Iwowowl253
Hello to all creative problem solvers,

Do you want to work on a fun, untimed team math competition with amazing questions by MOPpers and IMO & EGMO medalists? $\phantom{You lost the game.}$
Do you want to have a chance to win thousands in cash and raffle prizes (no matter your skill level)?

Check out the fifth annual iteration of the

Online Monmouth Math Competition!

Online Monmouth Math Competition, or OMMC, is a 501c3 accredited nonprofit organization managed by adults, college students, and high schoolers which aims to give talented high school and middle school students an exciting way to develop their skills in mathematics.

Our website: https://www.ommcofficial.org/
Our Discord (6000+ members): https://tinyurl.com/joinommc
Test portal: https://ommc-test-portal.vercel.app/

This is not a local competition; any student 18 or younger anywhere in the world can attend. We have changed some elements of our contest format, so read carefully and thoroughly. Join our Discord or monitor this thread for updates and test releases.

How hard is it?

We plan to raffle out a TON of prizes over all competitors regardless of performance. So just submit: a few minutes of your time will give you a great chance to win amazing prizes!

How are the problems?

You can check out our past problems and sample problems here:
https://www.ommcofficial.org/sample
https://www.ommcofficial.org/2022-documents
https://www.ommcofficial.org/2023-documents
https://www.ommcofficial.org/ommc-amc

How will the test be held?/How do I sign up?

Solo teams?

Test Policy

Timeline:
Main Round: May 17th - May 24th
Test Portal Released. The Main Round of the contest is held. The Main Round consists of 25 questions that each have a numerical answer. Teams will have the entire time interval to work on the questions. They can submit any time during the interval. Teams are free to edit their submissions before the period ends, even after they submit.

Final Round: May 26th - May 28th
The top placing teams will qualify for this invitational round (5-10 questions). The final round consists of 5-10 proof questions. Teams again will have the entire time interval to work on these questions and can submit their proofs any time during this interval. Teams are free to edit their submissions before the period ends, even after they submit.

Conclusion of Competition: Early June
Solutions will be released, winners announced, and prizes sent out to winners.

Scoring:

Prizes:

I have more questions. Whom do I ask?

We hope for your participation, and good luck!

OMMC staff

OMMC’S 2025 EVENTS ARE SPONSORED BY:

[list]
[*]Nontrivial Fellowship
[*]Citadel
[*]SPARC
[*]Jane Street
[*]And counting!
[/list]


44 replies
1 viewing
DottedCaculator
Apr 26, 2025
Iwowowl253
4 hours ago
Bears making swams
NO_SQUARES   0
4 hours ago
Source: Regional Stage of ARO 2025 11.7
There are several bears living on the $2025$ islands of the Arctic Ocean. Every bear sometimes swims from one island to another. It turned out that every bear made at least one swim in a year, but no two bears made equal swams. At the same time, exactly one swim was made between each two islands $A$ and $B$: either from $A$ to $B$ or from $B$ to $A$. Prove that there were no bears on some island at the beginning and at the end of the year.
A. Kuznetsov
0 replies
NO_SQUARES
4 hours ago
0 replies
((n-1)!-n)(n-2)!=m(m-2)
NO_SQUARES   0
4 hours ago
Source: Regional Stage of ARO 2025 9.5=11.4
Find all pairs of integer numbers $m$ and $n>2$ such that $((n-1)!-n)(n-2)!=m(m-2)$.
A. Kuznetsov
0 replies
NO_SQUARES
4 hours ago
0 replies
an army of frogs
ChuMath   4
N Jan 26, 2024 by pi_is_3.14
Source: 2024 AMC 8 P21
A group of frogs (called an army) is living in a tree. A frog turns green when in the shade and yellow when in the sun. Initially the ratio of green to yellow frogs was 3:1. Then 3 green frogs moved to the sunny side and 5 yellow frogs moved to the shady side. Now the ratio is 4:1. What is the difference between the number of green frogs and yellow frogs now?

$\textbf{(A) } 10\qquad\textbf{(B) } 12\qquad\textbf{(C) } 16\qquad\textbf{(D) } 20\qquad\textbf{(E) } 24$
4 replies
ChuMath
Jan 25, 2024
pi_is_3.14
Jan 26, 2024
an army of frogs
G H J
G H BBookmark kLocked kLocked NReply
Source: 2024 AMC 8 P21
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ChuMath
289 posts
#1
Y by
A group of frogs (called an army) is living in a tree. A frog turns green when in the shade and yellow when in the sun. Initially the ratio of green to yellow frogs was 3:1. Then 3 green frogs moved to the sunny side and 5 yellow frogs moved to the shady side. Now the ratio is 4:1. What is the difference between the number of green frogs and yellow frogs now?

$\textbf{(A) } 10\qquad\textbf{(B) } 12\qquad\textbf{(C) } 16\qquad\textbf{(D) } 20\qquad\textbf{(E) } 24$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
derekwang2048
1228 posts
#2
Y by
Sol
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Countmath1
180 posts
#3
Y by
Sol:Click to reveal hidden text
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
DuoDuoling0
3865 posts
#4
Y by
Don't overcomplicate it! :)
This post has been edited 2 times. Last edited by DuoDuoling0, Jan 26, 2024, 1:46 AM
Reason: =
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
pi_is_3.14
1437 posts
#5
Y by
Video Solution:
Z K Y
N Quick Reply
G
H
=
a