Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i A Letter to MSM
Arr0w   23
N Sep 19, 2022 by scannose
Greetings.

I have seen many posts talking about commonly asked questions, such as finding the value of $0^0$, $\frac{1}{0}$,$\frac{0}{0}$, $\frac{\infty}{\infty}$, why $0.999...=1$ or even expressions of those terms combined as if that would make them defined. I have made this post to answer these questions once and for all, and I politely ask everyone to link this post to threads that are talking about this issue.
[list]
[*]Firstly, the case of $0^0$. It is usually regarded that $0^0=1$, not because this works numerically but because it is convenient to define it this way. You will see the convenience of defining other undefined things later on in this post.

[*]What about $\frac{\infty}{\infty}$? The issue here is that $\infty$ isn't even rigorously defined in this expression. What exactly do we mean by $\infty$? Unless the example in question is put in context in a formal manner, then we say that $\frac{\infty}{\infty}$ is meaningless.

[*]What about $\frac{1}{0}$? Suppose that $x=\frac{1}{0}$. Then we would have $x\cdot 0=0=1$, absurd. A more rigorous treatment of the idea is that $\lim_{x\to0}\frac{1}{x}$ does not exist in the first place, although you will see why in a calculus course. So the point is that $\frac{1}{0}$ is undefined.

[*]What about if $0.99999...=1$? An article from brilliant has a good explanation. Alternatively, you can just use a geometric series. Notice that
\begin{align*}
\sum_{n=1}^{\infty} \frac{9}{10^n}&=9\sum_{n=1}^{\infty}\frac{1}{10^n}=9\sum_{n=1}^{\infty}\biggr(\frac{1}{10}\biggr)^n=9\biggr(\frac{\frac{1}{10}}{1-\frac{1}{10}}\biggr)=9\biggr(\frac{\frac{1}{10}}{\frac{9}{10}}\biggr)=9\biggr(\frac{1}{9}\biggr)=\boxed{1}
\end{align*}
[*]What about $\frac{0}{0}$? Usually this is considered to be an indeterminate form, but I would also wager that this is also undefined.
[/list]
Hopefully all of these issues and their corollaries are finally put to rest. Cheers.

2nd EDIT (6/14/22): Since I originally posted this, it has since blown up so I will try to add additional information per the request of users in the thread below.

INDETERMINATE VS UNDEFINED

What makes something indeterminate? As you can see above, there are many things that are indeterminate. While definitions might vary slightly, it is the consensus that the following definition holds: A mathematical expression is be said to be indeterminate if it is not definitively or precisely determined. So how does this make, say, something like $0/0$ indeterminate? In analysis (the theory behind calculus and beyond), limits involving an algebraic combination of functions in an independent variable may often be evaluated by replacing these functions by their limits. However, if the expression obtained after this substitution does not provide sufficient information to determine the original limit, then the expression is called an indeterminate form. For example, we could say that $0/0$ is an indeterminate form.

But we need to more specific, this is still ambiguous. An indeterminate form is a mathematical expression involving at most two of $0$, $1$ or $\infty$, obtained by applying the algebraic limit theorem (a theorem in analysis, look this up for details) in the process of attempting to determine a limit, which fails to restrict that limit to one specific value or infinity, and thus does not determine the limit being calculated. This is why it is called indeterminate. Some examples of indeterminate forms are
\[0/0, \infty/\infty, \infty-\infty, \infty \times 0\]etc etc. So what makes something undefined? In the broader scope, something being undefined refers to an expression which is not assigned an interpretation or a value. A function is said to be undefined for points outside its domain. For example, the function $f:\mathbb{R}^{+}\cup\{0\}\rightarrow\mathbb{R}$ given by the mapping $x\mapsto \sqrt{x}$ is undefined for $x<0$. On the other hand, $1/0$ is undefined because dividing by $0$ is not defined in arithmetic by definition. In other words, something is undefined when it is not defined in some mathematical context.

WHEN THE WATERS GET MUDDIED

So with this notion of indeterminate and undefined, things get convoluted. First of all, just because something is indeterminate does not mean it is not undefined. For example $0/0$ is considered both indeterminate and undefined (but in the context of a limit then it is considered in indeterminate form). Additionally, this notion of something being undefined also means that we can define it in some way. To rephrase, this means that technically, we can make something that is undefined to something that is defined as long as we define it. I'll show you what I mean.

One example of making something undefined into something defined is the extended real number line, which we define as
\[\overline{\mathbb{R}}=\mathbb{R}\cup \{-\infty,+\infty\}.\]So instead of treating infinity as an idea, we define infinity (positively and negatively, mind you) as actual numbers in the reals. The advantage of doing this is for two reasons. The first is because we can turn this thing into a totally ordered set. Specifically, we can let $-\infty\le a\le \infty$ for each $a\in\overline{\mathbb{R}}$ which means that via this order topology each subset has an infimum and supremum and $\overline{\mathbb{R}}$ is therefore compact. While this is nice from an analytic standpoint, extending the reals in this way can allow for interesting arithmetic! In $\overline{\mathbb{R}}$ it is perfectly OK to say that,
\begin{align*}
a + \infty = \infty + a & = \infty, & a & \neq -\infty \\
a - \infty = -\infty + a & = -\infty, & a & \neq \infty \\
a \cdot (\pm\infty) = \pm\infty \cdot a & = \pm\infty, & a & \in (0, +\infty] \\
a \cdot (\pm\infty) = \pm\infty \cdot a & = \mp\infty, & a & \in [-\infty, 0) \\
\frac{a}{\pm\infty} & = 0, & a & \in \mathbb{R} \\
\frac{\pm\infty}{a} & = \pm\infty, & a & \in (0, +\infty) \\
\frac{\pm\infty}{a} & = \mp\infty, & a & \in (-\infty, 0).
\end{align*}So addition, multiplication, and division are all defined nicely. However, notice that we have some indeterminate forms here which are also undefined,
\[\infty-\infty,\frac{\pm\infty}{\pm\infty},\frac{\pm\infty}{0},0\cdot \pm\infty.\]So while we define certain things, we also left others undefined/indeterminate in the process! However, in the context of measure theory it is common to define $\infty \times 0=0$ as greenturtle3141 noted below. I encourage to reread what he wrote, it's great stuff! As you may notice, though, dividing by $0$ is undefined still! Is there a place where it isn't? Kind of. To do this, we can extend the complex numbers! More formally, we can define this extension as
\[\mathbb{C}^*=\mathbb{C}\cup\{\tilde{\infty}\}\]which we call the Riemann Sphere (it actually forms a sphere, pretty cool right?). As a note, $\tilde{\infty}$ means complex infinity, since we are in the complex plane now. Here's the catch: division by $0$ is allowed here! In fact, we have
\[\frac{z}{0}=\tilde{\infty},\frac{z}{\tilde{\infty}}=0.\]where $\tilde{\infty}/\tilde{\infty}$ and $0/0$ are left undefined. We also have
\begin{align*}
z+\tilde{\infty}=\tilde{\infty}, \forall z\ne -\infty\\
z\times \tilde{\infty}=\tilde{\infty}, \forall z\ne 0
\end{align*}Furthermore, we actually have some nice properties with multiplication that we didn't have before. In $\mathbb{C}^*$ it holds that
\[\tilde{\infty}\times \tilde{\infty}=\tilde{\infty}\]but $\tilde{\infty}-\tilde{\infty}$ and $0\times \tilde{\infty}$ are left as undefined (unless there is an explicit need to change that somehow). One could define the projectively extended reals as we did with $\mathbb{C}^*$, by defining them as
\[{\widehat {\mathbb {R} }}=\mathbb {R} \cup \{\infty \}.\]They behave in a similar way to the Riemann Sphere, with division by $0$ also being allowed with the same indeterminate forms (in addition to some other ones).
23 replies
Arr0w
Feb 11, 2022
scannose
Sep 19, 2022
k i Marathon Threads
LauraZed   0
Jul 2, 2019
Due to excessive spam and inappropriate posts, we have locked the Prealgebra and Beginning Algebra threads.

We will either unlock these threads once we've cleaned them up or start new ones, but for now, do not start new marathon threads for these subjects. Any new marathon threads started while this announcement is up will be immediately deleted.
0 replies
LauraZed
Jul 2, 2019
0 replies
k i Basic Forum Rules and Info (Read before posting)
jellymoop   368
N May 16, 2018 by harry1234
f (Reminder: Do not post Alcumus or class homework questions on this forum. Instructions below.) f
Welcome to the Middle School Math Forum! Please take a moment to familiarize yourself with the rules.

Overview:
[list]
[*] When you're posting a new topic with a math problem, give the topic a detailed title that includes the subject of the problem (not just "easy problem" or "nice problem")
[*] Stay on topic and be courteous.
[*] Hide solutions!
[*] If you see an inappropriate post in this forum, simply report the post and a moderator will deal with it. Don't make your own post telling people they're not following the rules - that usually just makes the issue worse.
[*] When you post a question that you need help solving, post what you've attempted so far and not just the question. We are here to learn from each other, not to do your homework. :P
[*] Avoid making posts just to thank someone - you can use the upvote function instead
[*] Don't make a new reply just to repeat yourself or comment on the quality of others' posts; instead, post when you have a new insight or question. You can also edit your post if it's the most recent and you want to add more information.
[*] Avoid bumping old posts.
[*] Use GameBot to post alcumus questions.
[*] If you need general MATHCOUNTS/math competition advice, check out the threads below.
[*] Don't post other users' real names.
[*] Advertisements are not allowed. You can advertise your forum on your profile with a link, on your blog, and on user-created forums that permit forum advertisements.
[/list]

Here are links to more detailed versions of the rules. These are from the older forums, so you can overlook "Classroom math/Competition math only" instructions.
Posting Guidelines
Update on Basic Forum Rules
What belongs on this forum?
How do I write a thorough solution?
How do I get a problem on the contest page?
How do I study for mathcounts?
Mathcounts FAQ and resources
Mathcounts and how to learn

As always, if you have any questions, you can PM me or any of the other Middle School Moderators. Once again, if you see spam, it would help a lot if you filed a report instead of responding :)

Marathons!
Relays might be a better way to describe it, but these threads definitely go the distance! One person starts off by posting a problem, and the next person comes up with a solution and a new problem for another user to solve. Here's some of the frequently active marathons running in this forum:
[list][*]Algebra
[*]Prealgebra
[*]Proofs
[*]Factoring
[*]Geometry
[*]Counting & Probability
[*]Number Theory[/list]
Some of these haven't received attention in a while, but these are the main ones for their respective subjects. Rather than starting a new marathon, please give the existing ones a shot first.

You can also view marathons via the Marathon tag.

Think this list is incomplete or needs changes? Let the mods know and we'll take a look.
368 replies
jellymoop
May 8, 2015
harry1234
May 16, 2018
Website to learn math
hawa   108
N 3 minutes ago by Happyface25
Hi, I'm kinda curious what website do yall use to learn math, like i dont find any website thats fun to learn math
108 replies
hawa
Apr 9, 2025
Happyface25
3 minutes ago
Quick Question
b2025tyx   6
N 4 minutes ago by anticodon
During my math final today at school, the question said stated "When every integer is raised to the power of zero, it is equal to 1". The answers were multiple choice and were : Always, sometimes, never, and I don't know.

I ended up putting the first one, and was informed that it was incorrect. My teacher told me that $0^0$ is not equal to one. I looked it up, and it said $0^0 = 1$. Can someone confirm and prove this. Thanks!
6 replies
b2025tyx
an hour ago
anticodon
4 minutes ago
9 Pythagorean Triples
ZMB038   39
N 27 minutes ago by Elodie-AW
Please put some of the ones you know, and try not to troll/start flame wars! Thank you :D
39 replies
ZMB038
Yesterday at 6:04 PM
Elodie-AW
27 minutes ago
9 How many squares do you have memorized
LXC007   63
N 35 minutes ago by ZMB038
How many squares have you memorized. I have 1-20
63 replies
1 viewing
LXC007
May 17, 2025
ZMB038
35 minutes ago
National Team Round Problem 10?!
Leeoz   10
N 43 minutes ago by ZMB038
This was the 2015 national team round problem 10...


[quote=The hardest problem in MathCounts]
In the city of Trichotomy, every day the weather is exactly one of the following:
sunny, cloudy or rainy. Each day has a 50% chance of having the same weather
as the day before and a 25% chance of having each of the other two types of
weather. If it does not rain on Friday, what is the probability that there will be
no rain during the weekend (Saturday and Sunday)? Express your answer as a
common fraction.
[/quote]
10 replies
Leeoz
May 4, 2025
ZMB038
43 minutes ago
AP calc?
Thayaden   10
N an hour ago by Inaaya
How are we all feeling on AP calc guys?
10 replies
Thayaden
5 hours ago
Inaaya
an hour ago
Challenge: Make every number to 100 using 4 fours
CJB19   212
N an hour ago by CJB19
I've seen this attempted a lot but I want to see if the AoPS community can actually do it. Using ONLY 4 fours and math operations, make as many numbers as you can. Try to go in order. I'll start:
$$(4-4)*4*4=0$$$$4-4+4/4=1$$$$4/4+4/4=2$$$$(4+4+4)/4=3$$$$4+(4-4)*4=4$$$$4+4^{4-4}=5$$$$4!/4+4-4=6$$$$4+4-4/4=7$$$$4+4+4-4=8$$
212 replies
CJB19
May 15, 2025
CJB19
an hour ago
The daily problem!
Leeoz   183
N 2 hours ago by iwastedmyusername
Every day, I will try to post a new problem for you all to solve! If you want to post a daily problem, you can! :)

Please hide solutions and answers, hints are fine though! :)

Problems usually get harder throughout the week, so Sunday is the easiest and Saturday is the hardest!

Past Problems!
183 replies
Leeoz
Mar 21, 2025
iwastedmyusername
2 hours ago
Phillips Exeter is looking for math kids! That means YOU!
enya_yurself   50
N 2 hours ago by EGMO
I have received some insider information that may or may not prove to be helpful to you all. I am not sure where the best place to post this is, but somebody recommended msm so here I am.

[quote]admissions was explicitly told to accept more math kids, 25 26 and 27 have been pretty disappointing for the math dept bc of covid[/quote]
(source: a friend who talked to a faculty member on the admissions committee)

This means that Phillips Exeter is looking for more people like you all! I hope y'all choose to apply!

Remember that Exeter offers need blind financial aid :)
50 replies
enya_yurself
Aug 9, 2024
EGMO
2 hours ago
Probability problem
CJB19   10
N 2 hours ago by CJB19
Me and my math teacher got different answers for this so I'm asking you all:

Clare has a spinner split into fourths and labeled A, B, C, and D so that there is a $\frac{1}{4}$ chance of it landing on each section. She plays a game where if you spin it and it lands on A, you win. However, if you don't land on A the first time, you can try again. What are the odds of winning? (You don't spin again if you land on A the first time)
10 replies
CJB19
Yesterday at 6:39 PM
CJB19
2 hours ago
Fun challange problem :)
TigerSenju   17
N 2 hours ago by CJB19
Scenario:

Master Alchemist Aurelius is renowned for his mastery of elemental fusion. He works with seven fundamental, yet mysterious, elements: Ignis (Fire), Aqua (Water), Terra (Earth), Aer (Air), Lux (Light), Umbra (Shadow), and Aether (Spirit). Each element possesses a unique 'potency' value, a positive integer crucial for his most complex fusions

Aurelius has lost his master log of these potencies. All he has left are seven cryptic scrolls, each containing a precise relationship between the potencies of various elements. He needs these values to complete his Grand Device. Can you help him deduce the exact potency of each element?

The Elements and Their Potencies:

Let I represent the potency of Ignis (Fire).
Let A represent the potency of Aqua (Water).
Let T represent the potency of Terra (Earth).
Let R represent the potency of Aer (Air).
Let L represent the potency of Lux (Light).
Let U represent the potency of Umbra (Shadow).
Let E represent the potency of Aether (Spirit).
The Cryptic Scrolls (System of Equations):

Aurelius's scrolls reveal the following relationships:

The combined potency of Ignis, Aqua, and Terra is equal to the potency of Aer plus Lux, plus a constant of two.

If you sum the potencies of Aqua and Umbra, it precisely equals the sum of Lux and Aether, minus one.

The sum of Terra and Aer potencies is the same as the sum of Ignis, Aqua, and Aether potencies, minus one.

Three times the potency of Ignis, plus the potency of Aer, is equal to the sum of Aqua, Terra, and Aether potencies, plus five.

The difference between Lux and Ignis potencies is identical to the difference between Umbra and Aqua potencies.

The sum of Umbra and Aether potencies, when decreased by the potency of Terra, results in twice the potency of Aqua.

The potency of Ignis added to Lux, minus the potency of Aer, is equivalent to the potency of Aether minus Umbra, plus one.

The Grand Challenge:

Using only the information from the cryptic scrolls, set up and solve the system of seven linear equations to determine the unique positive integer potency value for each of the seven elements: I,A,T,R,L,U,E.

good luck, and whoever finds the potencies first, gets a title of The SYSTEMS OF EQUATIONS MASTER

p.s. Yes, I did just come up with a whole story of words to make a ridiculously long problem, but hey, you're reading this, so you probably have nothing better to be doing. ;)
17 replies
TigerSenju
May 18, 2025
CJB19
2 hours ago
Bogus Proof Marathon
pifinity   7632
N 3 hours ago by CJB19
Hi!
I'd like to introduce the Bogus Proof Marathon.

In this marathon, simply post a bogus proof that is middle-school level and the next person will find the error. You don't have to post the real solution :P

Use classic Marathon format:
[hide=P#]a1b2c3[/hide]
[hide=S#]a1b2c3[/hide]


Example posts:

P(x)
-----
S(x)
P(x+1)
-----
Let's go!! Just don't make it too hard!
7632 replies
pifinity
Mar 12, 2018
CJB19
3 hours ago
max number of candies
orangefronted   24
N 6 hours ago by GallopingUnicorn45
A store sells a strawberry flavoured candy for 1 dollar each. The store offers a promo where every 4 candy wrappers can be exchanged for one candy. If there is no limit to how many times you can exchange candy wrappers for candies, what is the maximum number of candies I can obtain with 100 dollars?
24 replies
orangefronted
Apr 3, 2025
GallopingUnicorn45
6 hours ago
2000th Post!
PikaPika999   58
N Today at 2:35 PM by PikaPika999
1. How many ways can you arrange the letters in the word ALGEBRA such that no two identical letters are adjacent?

2. Find the smallest positive integer n such that $n^2+n+41$ is not a prime number.

3. You have 4 red tiles, 3 blue tiles, and 2 green tiles. How many ways can you arrange them in a row such that no two tiles of the same color are adjacent?

4. You flip a fair coin repeatedly until you either get 3 tails or 4 heads. What is the expected value of the number of flips before stopping?

5. Let $A(2,3)$ and $B(8,7)$ be two points in the coordinate plane. A circle is drawn such that $\overline{AB}$ is a diameter.

(a). Find the equation of the circle in the form $(x+a)^2+(y+b)^2=r^2$

(b). The are two tangents to the circle that pass through the point $P(10,10)$. Find the equation of these lines.

hopefully these problems weren't too easy lol

also,
Please tell me if any of these problems have any flaws! (also please put your answers in hide tags or quote tags)
58 replies
PikaPika999
May 18, 2025
PikaPika999
Today at 2:35 PM
Geometry Transformation Problems
ReticulatedPython   7
N Apr 22, 2025 by ReticulatedPython
Problem 1:
A regular hexagon of side length $1$ is rotated $360$ degrees about one side. The space through which the hexagon travels during the rotation forms a solid. Find the volume of this solid.

Problem 2:

A regular octagon of side length $1$ is rotated $360$ degrees about one side. The space through which the octagon travels through during the rotation forms a solid. Find the volume of this solid.

Source:Own

Hint

Useful Formulas
7 replies
ReticulatedPython
Apr 17, 2025
ReticulatedPython
Apr 22, 2025
Geometry Transformation Problems
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ReticulatedPython
713 posts
#1
Y by
Problem 1:
A regular hexagon of side length $1$ is rotated $360$ degrees about one side. The space through which the hexagon travels during the rotation forms a solid. Find the volume of this solid.

Problem 2:

A regular octagon of side length $1$ is rotated $360$ degrees about one side. The space through which the octagon travels through during the rotation forms a solid. Find the volume of this solid.

Source:Own

Hint

Useful Formulas
This post has been edited 11 times. Last edited by ReticulatedPython, Apr 21, 2025, 3:33 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jb2015007
1967 posts
#2
Y by
ack i hate transformation problems and i suck at them so ill do this lol ill do it when i get home from school
@reticulated python check out the problem i posted in the intro to geo message board its real interesting
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ReticulatedPython
713 posts
#3
Y by
Ok I will.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ReticulatedPython
713 posts
#4
Y by
Anyone want to give it a try?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
cheltstudent
626 posts
#5
Y by
wait which intro to geo class is this
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ReticulatedPython
713 posts
#6
Y by
\bump :)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ReticulatedPython
713 posts
#7
Y by
I will present the solution to problem 1 and see if anyone can use that to solve problem 2. Solution
This post has been edited 2 times. Last edited by ReticulatedPython, Apr 21, 2025, 7:26 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ReticulatedPython
713 posts
#8
Y by
Alright I will give the answer to problem 2; the method is similar to that of problem 1. Answer
This post has been edited 1 time. Last edited by ReticulatedPython, Apr 22, 2025, 3:31 PM
Z K Y
N Quick Reply
G
H
=
a