ELMO 2014 SL G6

by Wolstenholme, Aug 1, 2014, 9:47 PM

Let $ABCD$ be a cyclic quadrilateral with center $O$.
Suppose the circumcircles of triangles $AOB$ and $COD$ meet again at $G$, while the circumcircles of triangles $AOD$ and $BOC$ meet again at $H$.
Let $\omega_1$ denote the circle passing through $G$ as well as the feet of the perpendiculars from $G$ to $AB$ and $CD$.
Define $\omega_2$ analogously as the circle passing through $H$ and the feet of the perpendiculars from $H$ to $BC$ and $DA$.
Show that the midpoint of $GH$ lies on the radical axis of $\omega_1$ and $\omega_2$.

Proof:

First, let $ E = AB \cap CD $ and $ F = BC \cap DA $ and denote the circumcircle of $ ABCD $ by $ \omega $. Let $ O_1, O_2 $ be the centers of $ \omega_1, \omega_2 $ respectively. Let $ M $ be the midpoint of $ GH $.

Consider the inversion about $ \omega $. It is clear that line $ AB $ goes to $ \omega_1 $ and that line $ CD $ goes to $ \omega_2 $ so $ E $ goes to $ G $. Similarly $ F $ goes to $ H $. Moreover, $ \omega_1 $ and $ \omega_2 $ are the circles with diameters $ EG $ and $ FH $ respectively. Now since $ M $ is the midpoint of $ GH $ and since $ O_1 $ is the midpoint of $ GE $ we have that $ O_{1}M \parallel HE $ and similarly $ O_{2}M \parallel GF $.

But since $ GF $ is the polar of $ E $ with respect to $ \omega $ we have that $ GF \perp OE $ so $ O_{2}M \perp OE $ which implies $ O_{2}M \perp OO_{1} $. Similarly $ O_{1}M \perp OO_{2} $ and so $ M $ is the orthocenter of triangle $ OO_{1}O_{2} $. This means that $ OM \perp O_{1}O_{2} $ so to show that $ M $ is on the radical axis of $ \omega_1 $ and $ \omega_2 $ it suffices to show that $ O $ is on this radical axis.

However, this is clear since both $ \omega_1 $ and $ \omega_2 $ are orthogonal to $ \omega $, so we are done.

Interestingly after doing the inversion step, a complex number solution is somewhat doable as well.

Also, apparently we can replace $ O $ with any point on line $ OQ $ where $ Q = AC \cap BD $ but I have not worked on proving this.

Comment

0 Comments

Archives
+ June 2016
+ April 2016
+ March 2016
+ July 2015
+ February 2015
+ June 2014
Shouts
Submit
  • glad to have found a fellow chipotle lover <3

    by nukelauncher, Aug 13, 2020, 6:40 AM

  • the random chinese tst problem is the only thing I read, but I'll assume your blog is nice and give you a shout even though you probably never use aops anymoer

    by fukano_2, Jun 14, 2020, 6:24 AM

  • wolstenholme - op

    by AopsUser101, Jan 29, 2020, 8:27 PM

  • this blog is so hot

    by mathleticguyyy, Jun 5, 2019, 8:26 PM

  • Hi. Nice Blog!

    by User360702, Jan 10, 2019, 6:03 PM

  • helloooooo

    by songssari, Jun 12, 2016, 8:21 AM

  • shouts make blogs happier

    by briantix, Mar 18, 2016, 9:57 PM

  • You were just featured on AoPS's facebook page.

    by mishka1980, Sep 12, 2015, 10:33 PM

  • This is late, but where is the ARML results post?

    by donot, Aug 31, 2015, 11:07 PM

  • "I am Sam"
    "Sam I am"

    by mathwizard888, Aug 12, 2015, 9:13 PM

  • HW$\textcolor{white}{}$

    by Eugenis, Apr 20, 2015, 10:10 PM

  • Uh-oh ARML practice is Thursday... I should start the homework. :P

    by nosaj, Apr 20, 2015, 12:34 AM

  • Yes I am Sam, and Chebyshev polynomials aren't trivial, although they do make some problems trivial :P

    by Wolstenholme, Apr 15, 2015, 10:00 PM

  • How are Chebyshev Polynomials trivial? :P

    by nosaj, Apr 13, 2015, 4:10 AM

  • Are you Sam?

    by Eugenis, Apr 4, 2015, 2:05 AM

  • @Brian: yes, yes I did #whoneedsalgskillz?

    @gauss1181; hey!

    by Wolstenholme, Mar 1, 2015, 11:25 PM

  • hello!!! :D

    by gauss1181, Nov 27, 2014, 12:19 AM

  • Hi Wolstenholme did you actually use calc on that tstst problem :o

    by briantix, Aug 2, 2014, 12:25 AM

18 shouts
Contributors
Tags
About Owner
  • Posts: 543
  • Joined: Mar 3, 2013
Blog Stats
  • Blog created: Apr 3, 2013
  • Total entries: 112
  • Total visits: 35003
  • Total comments: 167
Search Blog
a