IMO 2011 #2

by Wolstenholme, Oct 29, 2014, 10:43 PM

Let $\mathcal{S}$ be a finite set of at least two points in the plane. Assume that no three points of $\mathcal S$ are collinear. A windmill is a process that starts with a line $\ell$ going through a single point $P \in \mathcal S$. The line rotates clockwise about the pivot $P$ until the first time that the line meets some other point belonging to $\mathcal S$. This point, $Q$, takes over as the new pivot, and the line now rotates clockwise about $Q$, until it next meets a point of $\mathcal S$. This process continues indefinitely.
Show that we can choose a point $P$ in $\mathcal S$ and a line $\ell$ going through $P$ such that the resulting windmill uses each point of $\mathcal S$ as a pivot infinitely many times.

Proof:

Consider every possible (oriented) direction of a line in the plane. For any oriented line $ j $, let $ f(j) $ denote the number of points to the right of $ j $ subtracted from the number of points to the left of $ j $ (since the line is oriented, left and right are well-defined). Call a direction associated with a point in $ \mathcal{S} $ if the number of points to the left of the line $ k $ passing through that point with that direction satisfies $ f(k) \in \{0, 1\}. $ It is clear that every direction is associated with a unique point in $ \mathcal{S} $ and that every point in $ \mathcal{S} $ is associated with infinitely many directions . It is also clear that as a line moves about the plane as described in the problem, the function $ f $ remains invariant (except when the line passes through two points in $ \mathcal{S}, $ for then it is undefined). This implies that if we choose a line $ l $ with a given direction that is associated with a point in $ \mathcal{S} $ it will cycle through every point in $ \mathcal{S} $ infinitely, as desired.

Comment

0 Comments

Archives
+ June 2016
+ April 2016
+ March 2016
+ July 2015
+ February 2015
+ June 2014
Shouts
Submit
  • glad to have found a fellow chipotle lover <3

    by nukelauncher, Aug 13, 2020, 6:40 AM

  • the random chinese tst problem is the only thing I read, but I'll assume your blog is nice and give you a shout even though you probably never use aops anymoer

    by fukano_2, Jun 14, 2020, 6:24 AM

  • wolstenholme - op

    by AopsUser101, Jan 29, 2020, 8:27 PM

  • this blog is so hot

    by mathleticguyyy, Jun 5, 2019, 8:26 PM

  • Hi. Nice Blog!

    by User360702, Jan 10, 2019, 6:03 PM

  • helloooooo

    by songssari, Jun 12, 2016, 8:21 AM

  • shouts make blogs happier

    by briantix, Mar 18, 2016, 9:57 PM

  • You were just featured on AoPS's facebook page.

    by mishka1980, Sep 12, 2015, 10:33 PM

  • This is late, but where is the ARML results post?

    by donot, Aug 31, 2015, 11:07 PM

  • "I am Sam"
    "Sam I am"

    by mathwizard888, Aug 12, 2015, 9:13 PM

  • HW$\textcolor{white}{}$

    by Eugenis, Apr 20, 2015, 10:10 PM

  • Uh-oh ARML practice is Thursday... I should start the homework. :P

    by nosaj, Apr 20, 2015, 12:34 AM

  • Yes I am Sam, and Chebyshev polynomials aren't trivial, although they do make some problems trivial :P

    by Wolstenholme, Apr 15, 2015, 10:00 PM

  • How are Chebyshev Polynomials trivial? :P

    by nosaj, Apr 13, 2015, 4:10 AM

  • Are you Sam?

    by Eugenis, Apr 4, 2015, 2:05 AM

  • @Brian: yes, yes I did #whoneedsalgskillz?

    @gauss1181; hey!

    by Wolstenholme, Mar 1, 2015, 11:25 PM

  • hello!!! :D

    by gauss1181, Nov 27, 2014, 12:19 AM

  • Hi Wolstenholme did you actually use calc on that tstst problem :o

    by briantix, Aug 2, 2014, 12:25 AM

18 shouts
Contributors
Tags
About Owner
  • Posts: 543
  • Joined: Mar 3, 2013
Blog Stats
  • Blog created: Apr 3, 2013
  • Total entries: 112
  • Total visits: 34987
  • Total comments: 167
Search Blog