G
Topic
First Poster
Last Poster
k a My Retirement & New Leadership at AoPS
rrusczyk   1571
N Mar 26, 2025 by SmartGroot
I write today to announce my retirement as CEO from Art of Problem Solving. When I founded AoPS 22 years ago, I never imagined that we would reach so many students and families, or that we would find so many channels through which we discover, inspire, and train the great problem solvers of the next generation. I am very proud of all we have accomplished and I’m thankful for the many supporters who provided inspiration and encouragement along the way. I'm particularly grateful to all of the wonderful members of the AoPS Community!

I’m delighted to introduce our new leaders - Ben Kornell and Andrew Sutherland. Ben has extensive experience in education and edtech prior to joining AoPS as my successor as CEO, including starting like I did as a classroom teacher. He has a deep understanding of the value of our work because he’s an AoPS parent! Meanwhile, Andrew and I have common roots as founders of education companies; he launched Quizlet at age 15! His journey from founder to MIT to technology and product leader as our Chief Product Officer traces a pathway many of our students will follow in the years to come.

Thank you again for your support for Art of Problem Solving and we look forward to working with millions more wonderful problem solvers in the years to come.

And special thanks to all of the amazing AoPS team members who have helped build AoPS. We’ve come a long way from here:IMAGE
1571 replies
1 viewing
rrusczyk
Mar 24, 2025
SmartGroot
Mar 26, 2025
k a March Highlights and 2025 AoPS Online Class Information
jlacosta   0
Mar 2, 2025
March is the month for State MATHCOUNTS competitions! Kudos to everyone who participated in their local chapter competitions and best of luck to all going to State! Join us on March 11th for a Math Jam devoted to our favorite Chapter competition problems! Are you interested in training for MATHCOUNTS? Be sure to check out our AMC 8/MATHCOUNTS Basics and Advanced courses.

Are you ready to level up with Olympiad training? Registration is open with early bird pricing available for our WOOT programs: MathWOOT (Levels 1 and 2), CodeWOOT, PhysicsWOOT, and ChemWOOT. What is WOOT? WOOT stands for Worldwide Online Olympiad Training and is a 7-month high school math Olympiad preparation and testing program that brings together many of the best students from around the world to learn Olympiad problem solving skills. Classes begin in September!

Do you have plans this summer? There are so many options to fit your schedule and goals whether attending a summer camp or taking online classes, it can be a great break from the routine of the school year. Check out our summer courses at AoPS Online, or if you want a math or language arts class that doesn’t have homework, but is an enriching summer experience, our AoPS Virtual Campus summer camps may be just the ticket! We are expanding our locations for our AoPS Academies across the country with 15 locations so far and new campuses opening in Saratoga CA, Johns Creek GA, and the Upper West Side NY. Check out this page for summer camp information.

Be sure to mark your calendars for the following events:
[list][*]March 5th (Wednesday), 4:30pm PT/7:30pm ET, HCSSiM Math Jam 2025. Amber Verser, Assistant Director of the Hampshire College Summer Studies in Mathematics, will host an information session about HCSSiM, a summer program for high school students.
[*]March 6th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar on Math Competitions from elementary through high school. Join us for an enlightening session that demystifies the world of math competitions and helps you make informed decisions about your contest journey.
[*]March 11th (Tuesday), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS Chapter Discussion MATH JAM. AoPS instructors will discuss some of their favorite problems from the MATHCOUNTS Chapter Competition. All are welcome!
[*]March 13th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar about Summer Camps at the Virtual Campus. Transform your summer into an unforgettable learning adventure! From elementary through high school, we offer dynamic summer camps featuring topics in mathematics, language arts, and competition preparation - all designed to fit your schedule and ignite your passion for learning.[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Mar 2 - Jun 22
Friday, Mar 28 - Jul 18
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Tuesday, Mar 25 - Jul 8
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21


Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, Mar 23 - Jul 20
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Sunday, Mar 16 - Jun 8
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Monday, Mar 17 - Jun 9
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Sunday, Mar 2 - Jun 22
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Tuesday, Mar 4 - Aug 12
Sunday, Mar 23 - Sep 21
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Mar 16 - Sep 14
Tuesday, Mar 25 - Sep 2
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Sunday, Mar 23 - Aug 3
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Sunday, Mar 16 - Aug 24
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Wednesday, Mar 5 - May 21
Tuesday, Jun 10 - Aug 26

Calculus
Sunday, Mar 30 - Oct 5
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Sunday, Mar 23 - Jun 15
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Tuesday, Mar 4 - May 20
Monday, Mar 31 - Jun 23
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Monday, Mar 24 - Jun 16
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Sunday, Mar 30 - Jun 22
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Tuesday, Mar 25 - Sep 2
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Mar 2, 2025
0 replies
Range of solutions to the log equation
obihs   0
an hour ago
Source: Own
Let $n$ be a positive integer, and consider the equation:
$$(\log x)^n - x + 1 = 0\quad\cdots(\heartsuit)$$Answer the following questions. You may assume that $2.7<e<2.72$ is known.

$(1)\quad$ Determine the number of real solutions of equation $(\heartsuit)$ for each $n$.

$(2)\quad$ For $n\ge 3$ , let $r_n$ be the segond largest real solution of $(\heartsuit)$.

$(\i)\quad$ Find $\alpha$ such that $\lim_{n\to\infty} r_n =\alpha.$

$(\i\i)\quad$ Find $\lfloor\beta\rfloor$, where $\beta$ is defined as

$$\lim_{n\to\infty}n(r_n-\alpha)=\beta.$$
0 replies
obihs
an hour ago
0 replies
Strange limit
Snoop76   4
N 3 hours ago by Svyatoslav
Find: $\lim_{n \to \infty} n\cdot\sum_{k=1}^n \frac 1 {k(n-k)!}$
4 replies
Snoop76
Mar 29, 2025
Svyatoslav
3 hours ago
Improper integrahl manipulation
MetaphysicalWukong   1
N 3 hours ago by HacheB2031
Given the image, find out with justification if the following integrals converge or are uncertain to converge:
$\int _1^{\infty }\:\frac{h\left(x\right)}{x}dx,\:\int _1^{\infty \:}\:\sqrt{h\left(x\right)}dx,\:\int _1^{\infty \:}\:h\left(x^2\right)dx$
1 reply
MetaphysicalWukong
Today at 7:09 AM
HacheB2031
3 hours ago
Inequalities (Please help me!!!)
yt12   6
N 3 hours ago by lamhihi1234
Let $a,b,c$ be reals with $a+b+c=1$and $ a,b,c \ge \frac{-3}{ 4}$. Prove that
$$\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{ c^2+1} \le \frac{9}{ 10}$$
6 replies
yt12
Mar 4, 2023
lamhihi1234
3 hours ago
n->inf, f(n)->0
Alidq   2
N 3 hours ago by Alidq
I have a sequence $a_n=\sqrt[n]{f(n)} , n \geq 2$ where $f$ is a bijection from $\{0,1,2,….,n\}$ to itself.I need to find the limit of this sequence when $n$ tends to infinity , in the solution my friend gave to me he said that it’s trivial that the limit is greater or equal than 1 can someone tell me why?
2 replies
Alidq
4 hours ago
Alidq
3 hours ago
geometry incentre config
Tony_stark0094   0
3 hours ago
In a triangle $\Delta ABC$ $I$ is the incentre and point $F$ is defined such that $F \in AC$ and $F \in \odot BIC$
prove that $AI$ is the perpendicular bisector of $BF$
0 replies
Tony_stark0094
3 hours ago
0 replies
Inequalities
sqing   0
4 hours ago
Let $ a, b,c\geq 0 $ and $ 2a+3b+ 4c=11.$ Prove that
$$a+ab+abc\leq\frac{49}{6}$$Let $ a, b,c\geq 0 $ and $ 2a+3b+ 4c=10.$ Prove that
$$a+ab+abc\leq\frac{169}{24}$$Let $ a, b,c\geq 0 $ and $ 2a+3b+ 4c=14.$ Prove that
$$a+ab+abc\leq\frac{63+5\sqrt 5}{6}$$Let $ a, b,c\geq 0 $ and $ 2a+3b+ 4c=32.$ Prove that
$$a+ab+abc\leq48+\frac{64\sqrt{2}}{3}$$
0 replies
sqing
4 hours ago
0 replies
Inequalites 1/4
nhathhuyyp5c   1
N Today at 12:27 PM by sqing
Let $a,b,c,d$ be non-negative reals such that $a+b+c+d=3$. Prove that $$a+ab+abc+abcd\leq 4$$
1 reply
nhathhuyyp5c
Today at 6:10 AM
sqing
Today at 12:27 PM
combionatrics question
Tony_stark0094   1
N Today at 12:08 PM by Tony_stark0094
There are $2n$ people seated around a circular table, and $m$ cookies
are distributed among them. The cookies can be passed under the
following rules:
(a) Each person can only pass cookies to his or her neighbors
(b) Each time someone passes a cookie, he or she must also eat a
cookie
Let $A$ be one of these people. Find the least $m$ such that no matter
how $m$ cookies are distributed initially, there is a strategy to pass
cookies so that $A$ receives at least one cookie.
1 reply
Tony_stark0094
Today at 12:08 PM
Tony_stark0094
Today at 12:08 PM
Functional Equation
ab_xy123   4
N Today at 10:35 AM by millennium2k
Find all solutions to the functional equation $f(1-x) = f(x) + 1 - 2x$
4 replies
ab_xy123
Mar 16, 2020
millennium2k
Today at 10:35 AM
ez problem
Noname23   2
N Today at 10:27 AM by lbh_qys
Find $x$
$7 + \sqrt7 + 2\sqrt{x + 4} + \sqrt{7x + 28} + \sqrt{14x + 7} + \sqrt{2x^2 + 9x + 4} - \sqrt{2x + 1} = 0$
2 replies
Noname23
Today at 6:14 AM
lbh_qys
Today at 10:27 AM
An inequality with two equality cases
JK1603JK   1
N Today at 10:23 AM by lbh_qys
Let a,b,c\ge 0: a+b+c>0 then prove \frac{b+c-2a}{2a+b+c}+\frac{c+a-2b}{2b+c+a}+\frac{a+b-2c}{2c+a+b}\ge \frac{4(a^2+b^2+c^2-ab-bc-ca)}{5(a^{2}+b^{2}+c^{2})+6(ab+bc+ca)}
1 reply
JK1603JK
Today at 8:14 AM
lbh_qys
Today at 10:23 AM
Inequality
lbh_qys   1
N Today at 9:52 AM by lbh_qys
Let \(a,b,c \geq 0\) and \(5(a^2+b^2+c^2)-3(a+b+c)+2abc\leq 8\). Prove that \(a^3+b^3+c^3+2abc\leq 5\).
1 reply
lbh_qys
Mar 28, 2025
lbh_qys
Today at 9:52 AM
An inequality
JK1603JK   3
N Today at 9:22 AM by lbh_qys
Let a,b,c\ge 0: ab+bc+ca>0 then prove \frac{4ab+5c^2}{a+b}+\frac{4bc+5a^2}{b+c}+\frac{4ca+5b^2}{c+a}\ge \frac{3}{2}\cdot\frac{(a+b+c)^3}{ab+bc+ca}.
3 replies
JK1603JK
Yesterday at 7:11 AM
lbh_qys
Today at 9:22 AM
something like MVT
mqoi_KOLA   8
N Mar 30, 2025 by Alphaamss
If $F$ is a continuous function on $[0,1]$ such that $F(0) = F(1)$, then there exists a $c \in (0,1)$ such that:

\[
F(c) = \frac{1}{c} \int_0^c F(x) \,dx
\]
8 replies
mqoi_KOLA
Mar 29, 2025
Alphaamss
Mar 30, 2025
something like MVT
G H J
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mqoi_KOLA
71 posts
#1
Y by
If $F$ is a continuous function on $[0,1]$ such that $F(0) = F(1)$, then there exists a $c \in (0,1)$ such that:

\[
F(c) = \frac{1}{c} \int_0^c F(x) \,dx
\]
This post has been edited 2 times. Last edited by mqoi_KOLA, Mar 29, 2025, 11:39 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mathzeus1024
774 posts
#2
Y by
withdrawn
This post has been edited 3 times. Last edited by Mathzeus1024, Mar 30, 2025, 10:21 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
quasar_lord
201 posts
#3
Y by
Hopefully not fakesolve
Apply integral MVT (justified as $F$ is continuous)

\[
F(c) = \frac{1}{c} \int_0^c F(x) \,dx = F(d)
\]
So we need to show that there exists $0 < d < c < 1$ such that $F(c) = F(d)$

Let $g(x) = F(x+0.5) - F(x)$ for $x \in [0, 0.5]$
$g(0) = F(0.5) - F(0)$
$g(0.5) = F(1) - F(0.5) = -g(0)$

Applying IVT on $g$,
$g(0)g(0.5) < 0$, so there exists a $\eta \in (0, 0.5)$ such that $g(\eta) = 0$, ie $F(\eta + 0.5) = F(\eta)$

Call $\eta + 0.5 = c$, $\eta = d$ and we are done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mqoi_KOLA
71 posts
#4
Y by
Mathzeus1024 wrote:
If $F:[0,1] \rightarrow \mathbb{R}$ is a continuous function such that $F(0)=F(1)$, then by Rolle's Theorem $\exists c \in (0,1)$ such that $F'(c)=0$. Suppose that $F'(x) = A(x-c) = 0 \Rightarrow F(x) = \frac{A}{2}(x-c)^2 + B$ for some $A,B \in \mathbb{R}$. If $F(0)=F(1)$, then:

$\frac{A}{2}(0-c)^2 + B = \frac{A}{2}(1-c)^2+B \Rightarrow c^2=(1-c)^2 \Rightarrow c = \frac{1}{2}$.

If $F(c) = \frac{1}{c}\int_{0}^{c} F(x) dx$ holds, then we obtain:

$F(1/2) = 2\int_{0}^{1/2} F(x) dx \Rightarrow B = 2\left[\frac{A}{6}(x-1/2)^3+Bx\right]_{0}^{1/2} \Rightarrow B = B +\frac{A}{24} \Rightarrow A=0$;

or $F(x) = B \Rightarrow \exists c \in (0,1)$ such that $F(c)=\frac{1}{c}\int_{0}^{c}F(x) dx$ for constant function $F$.

sorry but i dont think your proof is on right lines.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mqoi_KOLA
71 posts
#5
Y by
Mathzeus1024 wrote:
If $F:[0,1] \rightarrow \mathbb{R}$ is a continuous function such that $F(0)=F(1)$, then by Rolle's Theorem $\exists c \in (0,1)$ such that $F'(c)=0$. Suppose that $F'(x) = A(x-c) = 0 \Rightarrow F(x) = \frac{A}{2}(x-c)^2 + B$ for some $A,B \in \mathbb{R}$. If $F(0)=F(1)$, then:

$\frac{A}{2}(0-c)^2 + B = \frac{A}{2}(1-c)^2+B \Rightarrow c^2=(1-c)^2 \Rightarrow c = \frac{1}{2}$.

If $F(c) = \frac{1}{c}\int_{0}^{c} F(x) dx$ holds, then we obtain:

$F(1/2) = 2\int_{0}^{1/2} F(x) dx \Rightarrow B = 2\left[\frac{A}{6}(x-1/2)^3+Bx\right]_{0}^{1/2} \Rightarrow B = B +\frac{A}{24} \Rightarrow A=0$;

or $F(x) = B \Rightarrow \exists c \in (0,1)$ such that $F(c)=\frac{1}{c}\int_{0}^{c}F(x) dx$ for constant function $F$.

i think you understood the question wrong we dont have to find such function which obey the condition(there are other functions too),
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mqoi_KOLA
71 posts
#6
Y by
quasar_lord wrote:
Hopefully not fakesolve
Apply integral MVT (justified as $F$ is continuous)

\[
F(c) = \frac{1}{c} \int_0^c F(x) \,dx = F(d)
\]
So we need to show that there exists $0 < d < c < 1$ such that $F(c) = F(d)$
Let $g(x) = F(x+0.5) - F(x)$ for $x \in [0, 0.5]$
$g(0) = F(0.5) - F(0)$
$g(0.5) = F(1) - F(0.5) = -g(0)$

Applying IVT on $g$,
$g(0)g(0.5) < 0$, so there exists a $\eta \in (0, 0.5)$ such that $g(\eta) = 0$, ie $F(\eta + 0.5) = F(\eta)$

Call $\eta + 0.5 = c$, $\eta = d$ and we are done.


its a fakesolve.
This post has been edited 1 time. Last edited by mqoi_KOLA, Mar 29, 2025, 11:41 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Filipjack
830 posts
#7
Y by
@Mathzeus1024: You keep making random assumptions in most of your posts. For example here you assume that $F$ is differentiable, then you assume that $F'(x)=A(x-c),$ and worst of all, you assume exactly what you are supposed to prove. Please reconsider the way you are contributing, because this type of posts doesn't help anyone, but actually creates confusions.

@quasar_lord: Unfortunately, once you apply MVT, that $c$ that you get becomes fixed, so you cannot choose it to be $\eta + 0.5.$
This post has been edited 2 times. Last edited by Filipjack, Mar 29, 2025, 8:33 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Filipjack
830 posts
#8 • 1 Y
Y by Alphaamss
According to Weierstrass Theorem, $F$ has minimum and maximum, so let $a= \sup \{ s : F(s)= \min_{x \in [0,1]} F(x) \}$ and $b= \sup \{ s : F(s)= \max_{x \in [0,1]} F(x) \}.$ By continuity, we get $F(a)=\min_{x \in [0,1]} F(x)$ and $F(b)=\max_{x \in [0,1]} F(x).$

Notice that if $a=0,$ then $F(0)= \min_{x \in [0,1]} F(x),$ so $F(1)= \min_{x \in [0,1]} F(x),$ contradicting the definition of $a.$ Therefore $a>0,$ and similarly we get $b>0.$

Consider the function $G:(0,1] \to \mathbb{R},$ $G(x)=F(x)- \frac{1}{x} \int\limits_0^x F(t) \mathrm{d}t.$ We have $G(a) \le 0.$ If $G(a)=0,$ then $\int\limits_0^a (F(t)-F(a)) \mathrm{d}t=0,$ which combined with $F(t)-F(a) \ge 0$ and the continuity of $F(t)-F(a)$ implies $F(t)=F(a), \forall t \in [0,a].$ In this case we can choose any $c \in (0,a),$ for example $c=a/2.$

Likewise, $G(b) \ge 0,$ and if $G(b)=0,$ then $F(t)=F(b), \forall t \in [0,b],$ and we can choose $c=b/2.$

Finally, if $G(a)<0$ and $G(b)>0,$ then by IVT there is $c \in (a,b)$ such that $G(c)=0.$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Alphaamss
223 posts
#9
Y by
@Filipjack Nice idea!
Z K Y
N Quick Reply
G
H
=
a