Y by Euler_Gauss
Let
be a
-dimensional inner product space of column vectors, where for
and
, the inner product of
and
is defined as
For
, define a linear transformation
on
as follows:
Given
satisfying
let
. Then the dimension of the linear space formed by all linear transformations
satisfying
is 






![\[\langle v, w \rangle = \sum_{i=1}^{10} v_i w_i.\]](http://latex.artofproblemsolving.com/9/f/9/9f9b7ff2fb19fee7e935c1b18dea3ec80547b9f9.png)



![\[ P_u : V \to V, \quad x \mapsto x - \frac{2\langle x, u \rangle u}{\langle u, u \rangle} \]](http://latex.artofproblemsolving.com/9/6/4/9646290e2b5e540b7f85d0d71e4d8992ccd8f542.png)

![\[ 0 < \langle v, w \rangle < \sqrt{\langle v, v \rangle \langle w, w \rangle} \]](http://latex.artofproblemsolving.com/d/8/0/d800fe48958cfee9ac01aa8bf11fe431ef45f8ef.png)



