Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
Thursday at 11:16 PM
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Thursday at 11:16 PM
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
D1023 : MVT 2.0
Dattier   1
N a few seconds ago by Dattier
Source: les dattes à Dattier
Let $f \in C(\mathbb R)$ derivable on $\mathbb R$ with $$\forall x \in \mathbb R,\forall h \geq 0, f(x)-3f(x+h)+3f(x+2h)-f(x+3h) \geq 0$$
Is it true that $$\forall (a,b) \in\mathbb R^2, |f(a)-f(b)|\leq \max\left(\left|f'\left(\dfrac{a+b} 2\right)\right|,\dfrac {|f'(a)+f'(b)|}{2}\right)\times |a-b|$$
1 reply
Dattier
Apr 29, 2025
Dattier
a few seconds ago
Equivalent condition of the uniformly continuous fo a function
Alphaamss   0
21 minutes ago
Source: Personal
Let $f_{a,b}(x)=x^a\cos(x^b),x\in(0,\infty)$. Get all the $(a,b)\in\mathbb R^2$ such that $f_{a,b}$ is uniformly continuous on $(0,\infty)$.
0 replies
Alphaamss
21 minutes ago
0 replies
Find all continuous functions
bakkune   2
N 34 minutes ago by bakkune
Source: Own
Find all continuous function $f, g\colon\mathbb{R}\to\mathbb{R}$ satisfied
$$
(x - k)f(x) = \int_k^x g(y)\mathrm{d}y 
$$for all $x\in\mathbb{R}$ and all $k\in\mathbb{Z}$.
2 replies
bakkune
2 hours ago
bakkune
34 minutes ago
ISI 2019 : Problem #2
integrated_JRC   40
N an hour ago by Sammy27
Source: I.S.I. 2019
Let $f:(0,\infty)\to\mathbb{R}$ be defined by $$f(x)=\lim_{n\to\infty}\cos^n\bigg(\frac{1}{n^x}\bigg)$$(a) Show that $f$ has exactly one point of discontinuity.
(b) Evaluate $f$ at its point of discontinuity.
40 replies
integrated_JRC
May 5, 2019
Sammy27
an hour ago
Equal sum of digits
Fudicuehfosonrcjeong   0
an hour ago
Is it true that for any two positive integers a, b there exists a positive integer k such that s(ka)=s(kb), where s(n) is sum of digits in base 10?
0 replies
Fudicuehfosonrcjeong
an hour ago
0 replies
Common tangent of mixtilinear incircles
CyclicISLscelesTrapezoid   3
N 2 hours ago by Ilikeminecraft
Source: MOP 2020/1Z
Let $ABCD$ be a quadrilateral inscribed in circle $\Omega$. Circles $\omega_A$ and $\omega_D$ are drawn internally tangent to $\Omega$, such that $\omega_A$ is tangent to $\overline{AB}$ and $\overline{AC}$ while $\omega_D$ is tangent to $\overline{DB}$ and $\overline{DC}$. Prove that we can draw a line parallel to $\overline{AD}$ which is simultaneously tangent to both $\omega_A$ and $\omega_D$.
3 replies
CyclicISLscelesTrapezoid
Jan 6, 2023
Ilikeminecraft
2 hours ago
Construct
Pomegranat   2
N 2 hours ago by Blackbeam999
Source: idk
Let \( p \) be a prime number. Prove that there exists a natural number \( n \) such that
\[
p \mid m^n - n.
\]
2 replies
Pomegranat
Apr 30, 2025
Blackbeam999
2 hours ago
square root problem
kjhgyuio   2
N 2 hours ago by wh0nix
........
2 replies
kjhgyuio
3 hours ago
wh0nix
2 hours ago
Almost Squarefree Integers
oVlad   4
N 2 hours ago by HeshTarg
Source: Romania Junior TST 2025 Day 1 P1
A positive integer $n\geqslant 3$ is almost squarefree if there exists a prime number $p\equiv 1\bmod 3$ such that $p^2\mid n$ and $n/p$ is squarefree. Prove that for any almost squarefree positive integer $n$ the ratio $2\sigma(n)/d(n)$ is an integer.
4 replies
oVlad
Apr 12, 2025
HeshTarg
2 hours ago
A nice and easy gem off of StackExchange
NamelyOrange   2
N 3 hours ago by Royal_mhyasd
Source: https://math.stackexchange.com/questions/3818796/
Define $S$ as the set of all numbers of the form $2^i5^j$ for some nonnegative $i$ and $j$. Find (with proof) all pairs $(m,n)$ such that $m,n\in S$ and $m-n=1$.


Rephrased: Solve $2^a5^b-2^c5^d=1$ over $(\mathbb{N}_0)^4$, and prove that your solution(s) is/are the only one(s).
2 replies
1 viewing
NamelyOrange
Yesterday at 8:13 PM
Royal_mhyasd
3 hours ago
Comics and triangles in perspective
srirampanchapakesan   1
N 3 hours ago by ohiorizzler1434
Source: Own
Let a conic intersect the sides BC, CA, AB of triangle ABC at A1,A2,B1,B2,C1,C2.

T1 is the triangle formed by A1B2, B1C2, and C1A2.

T2 is the triangle formed by A2B1, B2C1 and C2A1.

Prove that the triangles ABC, T1 and T2 are pair-wise in perspective.

Also prove that all three centers of perspective coincide.
1 reply
srirampanchapakesan
4 hours ago
ohiorizzler1434
3 hours ago
Integer a_k such that b - a^n_k is divisible by k
orl   70
N 3 hours ago by Aiden-1089
Source: IMO Shortlist 2007, N2, Ukrainian TST 2008 Problem 10
Let $b,n > 1$ be integers. Suppose that for each $k > 1$ there exists an integer $a_k$ such that $b - a^n_k$ is divisible by $k$. Prove that $b = A^n$ for some integer $A$.

Author: Dan Brown, Canada
70 replies
orl
Jul 13, 2008
Aiden-1089
3 hours ago
minimum of \sqrt{\frac{a}{b(3a+2)}}+\sqrt{\frac{b}{a(3b+2)}}
parmenides51   10
N 3 hours ago by Tomilovedoingmath
Source: JBMO Shortlist 2017 A2
Let $a$ and $b$ be positive real numbers such that $3a^2 + 2b^2 = 3a + 2b$. Find the minimum value of $A =\sqrt{\frac{a}{b(3a+2)}} + \sqrt{\frac{b}{a(2b+3)}} $
10 replies
parmenides51
Jul 25, 2018
Tomilovedoingmath
3 hours ago
inequalities
Cobedangiu   1
N 4 hours ago by xytunghoanh
$a,b,c>0$ and $\sum ab=\dfrac{1}{3}$. Prove that:
$\sum \dfrac{1}{a^2-bc+1}\le 3$
1 reply
Cobedangiu
4 hours ago
xytunghoanh
4 hours ago
Integrable function: + and - on every subinterval.
SPQ   3
N Apr 23, 2025 by solyaris
Provide a function integrable on [a, b] such that f takes on positive and negative values on every subinterval (c, d) of [a, b]. Prove your function satisfies both conditions.
3 replies
SPQ
Apr 23, 2025
solyaris
Apr 23, 2025
Integrable function: + and - on every subinterval.
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SPQ
5 posts
#1
Y by
Provide a function integrable on [a, b] such that f takes on positive and negative values on every subinterval (c, d) of [a, b]. Prove your function satisfies both conditions.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
greenturtle3141
3557 posts
#2
Y by
Really depends what you mean by "integrable", but for the lebesgue case the characteristic function on rationals works just fine
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SPQ
5 posts
#3
Y by
Thanks for the suggestion. You are right that the characteristic function of the rationals in [a, b] is Lebesgue integrable. However, the characteristic function doesn't satisfy the second condition: it doesn't take on negative values anywhere; it only takes on the values 1 and 0.

Also, just to clarify, I was referring to Riemann integrability.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
solyaris
632 posts
#4
Y by
@above: But of course you can slightly modify the charactersistic function (so that it takes values $1,-1$ instead of $1,0$) to give a counterexample.

For Riemann integrability you only have to introduce a further slight modification: Take $f(x) = 0$ for irrational $x$, and for rational $x = \frac k n$
with integer $k,n$ and $n > 0$ in reduced form, define $f(\frac k n) = -\frac 1 n$ for odd $n$ and $f(\frac k n) = \frac 1 n$ for even $n$. It is not hard to see that $f$ is Riemann-integrable and takes positive and negative values in any open interval.
Z K Y
N Quick Reply
G
H
=
a