Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i A Letter to MSM
Arr0w   23
N Sep 19, 2022 by scannose
Greetings.

I have seen many posts talking about commonly asked questions, such as finding the value of $0^0$, $\frac{1}{0}$,$\frac{0}{0}$, $\frac{\infty}{\infty}$, why $0.999...=1$ or even expressions of those terms combined as if that would make them defined. I have made this post to answer these questions once and for all, and I politely ask everyone to link this post to threads that are talking about this issue.
[list]
[*]Firstly, the case of $0^0$. It is usually regarded that $0^0=1$, not because this works numerically but because it is convenient to define it this way. You will see the convenience of defining other undefined things later on in this post.

[*]What about $\frac{\infty}{\infty}$? The issue here is that $\infty$ isn't even rigorously defined in this expression. What exactly do we mean by $\infty$? Unless the example in question is put in context in a formal manner, then we say that $\frac{\infty}{\infty}$ is meaningless.

[*]What about $\frac{1}{0}$? Suppose that $x=\frac{1}{0}$. Then we would have $x\cdot 0=0=1$, absurd. A more rigorous treatment of the idea is that $\lim_{x\to0}\frac{1}{x}$ does not exist in the first place, although you will see why in a calculus course. So the point is that $\frac{1}{0}$ is undefined.

[*]What about if $0.99999...=1$? An article from brilliant has a good explanation. Alternatively, you can just use a geometric series. Notice that
\begin{align*}
\sum_{n=1}^{\infty} \frac{9}{10^n}&=9\sum_{n=1}^{\infty}\frac{1}{10^n}=9\sum_{n=1}^{\infty}\biggr(\frac{1}{10}\biggr)^n=9\biggr(\frac{\frac{1}{10}}{1-\frac{1}{10}}\biggr)=9\biggr(\frac{\frac{1}{10}}{\frac{9}{10}}\biggr)=9\biggr(\frac{1}{9}\biggr)=\boxed{1}
\end{align*}
[*]What about $\frac{0}{0}$? Usually this is considered to be an indeterminate form, but I would also wager that this is also undefined.
[/list]
Hopefully all of these issues and their corollaries are finally put to rest. Cheers.

2nd EDIT (6/14/22): Since I originally posted this, it has since blown up so I will try to add additional information per the request of users in the thread below.

INDETERMINATE VS UNDEFINED

What makes something indeterminate? As you can see above, there are many things that are indeterminate. While definitions might vary slightly, it is the consensus that the following definition holds: A mathematical expression is be said to be indeterminate if it is not definitively or precisely determined. So how does this make, say, something like $0/0$ indeterminate? In analysis (the theory behind calculus and beyond), limits involving an algebraic combination of functions in an independent variable may often be evaluated by replacing these functions by their limits. However, if the expression obtained after this substitution does not provide sufficient information to determine the original limit, then the expression is called an indeterminate form. For example, we could say that $0/0$ is an indeterminate form.

But we need to more specific, this is still ambiguous. An indeterminate form is a mathematical expression involving at most two of $0$, $1$ or $\infty$, obtained by applying the algebraic limit theorem (a theorem in analysis, look this up for details) in the process of attempting to determine a limit, which fails to restrict that limit to one specific value or infinity, and thus does not determine the limit being calculated. This is why it is called indeterminate. Some examples of indeterminate forms are
\[0/0, \infty/\infty, \infty-\infty, \infty \times 0\]etc etc. So what makes something undefined? In the broader scope, something being undefined refers to an expression which is not assigned an interpretation or a value. A function is said to be undefined for points outside its domain. For example, the function $f:\mathbb{R}^{+}\cup\{0\}\rightarrow\mathbb{R}$ given by the mapping $x\mapsto \sqrt{x}$ is undefined for $x<0$. On the other hand, $1/0$ is undefined because dividing by $0$ is not defined in arithmetic by definition. In other words, something is undefined when it is not defined in some mathematical context.

WHEN THE WATERS GET MUDDIED

So with this notion of indeterminate and undefined, things get convoluted. First of all, just because something is indeterminate does not mean it is not undefined. For example $0/0$ is considered both indeterminate and undefined (but in the context of a limit then it is considered in indeterminate form). Additionally, this notion of something being undefined also means that we can define it in some way. To rephrase, this means that technically, we can make something that is undefined to something that is defined as long as we define it. I'll show you what I mean.

One example of making something undefined into something defined is the extended real number line, which we define as
\[\overline{\mathbb{R}}=\mathbb{R}\cup \{-\infty,+\infty\}.\]So instead of treating infinity as an idea, we define infinity (positively and negatively, mind you) as actual numbers in the reals. The advantage of doing this is for two reasons. The first is because we can turn this thing into a totally ordered set. Specifically, we can let $-\infty\le a\le \infty$ for each $a\in\overline{\mathbb{R}}$ which means that via this order topology each subset has an infimum and supremum and $\overline{\mathbb{R}}$ is therefore compact. While this is nice from an analytic standpoint, extending the reals in this way can allow for interesting arithmetic! In $\overline{\mathbb{R}}$ it is perfectly OK to say that,
\begin{align*}
a + \infty = \infty + a & = \infty, & a & \neq -\infty \\
a - \infty = -\infty + a & = -\infty, & a & \neq \infty \\
a \cdot (\pm\infty) = \pm\infty \cdot a & = \pm\infty, & a & \in (0, +\infty] \\
a \cdot (\pm\infty) = \pm\infty \cdot a & = \mp\infty, & a & \in [-\infty, 0) \\
\frac{a}{\pm\infty} & = 0, & a & \in \mathbb{R} \\
\frac{\pm\infty}{a} & = \pm\infty, & a & \in (0, +\infty) \\
\frac{\pm\infty}{a} & = \mp\infty, & a & \in (-\infty, 0).
\end{align*}So addition, multiplication, and division are all defined nicely. However, notice that we have some indeterminate forms here which are also undefined,
\[\infty-\infty,\frac{\pm\infty}{\pm\infty},\frac{\pm\infty}{0},0\cdot \pm\infty.\]So while we define certain things, we also left others undefined/indeterminate in the process! However, in the context of measure theory it is common to define $\infty \times 0=0$ as greenturtle3141 noted below. I encourage to reread what he wrote, it's great stuff! As you may notice, though, dividing by $0$ is undefined still! Is there a place where it isn't? Kind of. To do this, we can extend the complex numbers! More formally, we can define this extension as
\[\mathbb{C}^*=\mathbb{C}\cup\{\tilde{\infty}\}\]which we call the Riemann Sphere (it actually forms a sphere, pretty cool right?). As a note, $\tilde{\infty}$ means complex infinity, since we are in the complex plane now. Here's the catch: division by $0$ is allowed here! In fact, we have
\[\frac{z}{0}=\tilde{\infty},\frac{z}{\tilde{\infty}}=0.\]where $\tilde{\infty}/\tilde{\infty}$ and $0/0$ are left undefined. We also have
\begin{align*}
z+\tilde{\infty}=\tilde{\infty}, \forall z\ne -\infty\\
z\times \tilde{\infty}=\tilde{\infty}, \forall z\ne 0
\end{align*}Furthermore, we actually have some nice properties with multiplication that we didn't have before. In $\mathbb{C}^*$ it holds that
\[\tilde{\infty}\times \tilde{\infty}=\tilde{\infty}\]but $\tilde{\infty}-\tilde{\infty}$ and $0\times \tilde{\infty}$ are left as undefined (unless there is an explicit need to change that somehow). One could define the projectively extended reals as we did with $\mathbb{C}^*$, by defining them as
\[{\widehat {\mathbb {R} }}=\mathbb {R} \cup \{\infty \}.\]They behave in a similar way to the Riemann Sphere, with division by $0$ also being allowed with the same indeterminate forms (in addition to some other ones).
23 replies
Arr0w
Feb 11, 2022
scannose
Sep 19, 2022
k i Marathon Threads
LauraZed   0
Jul 2, 2019
Due to excessive spam and inappropriate posts, we have locked the Prealgebra and Beginning Algebra threads.

We will either unlock these threads once we've cleaned them up or start new ones, but for now, do not start new marathon threads for these subjects. Any new marathon threads started while this announcement is up will be immediately deleted.
0 replies
LauraZed
Jul 2, 2019
0 replies
k i Basic Forum Rules and Info (Read before posting)
jellymoop   368
N May 16, 2018 by harry1234
f (Reminder: Do not post Alcumus or class homework questions on this forum. Instructions below.) f
Welcome to the Middle School Math Forum! Please take a moment to familiarize yourself with the rules.

Overview:
[list]
[*] When you're posting a new topic with a math problem, give the topic a detailed title that includes the subject of the problem (not just "easy problem" or "nice problem")
[*] Stay on topic and be courteous.
[*] Hide solutions!
[*] If you see an inappropriate post in this forum, simply report the post and a moderator will deal with it. Don't make your own post telling people they're not following the rules - that usually just makes the issue worse.
[*] When you post a question that you need help solving, post what you've attempted so far and not just the question. We are here to learn from each other, not to do your homework. :P
[*] Avoid making posts just to thank someone - you can use the upvote function instead
[*] Don't make a new reply just to repeat yourself or comment on the quality of others' posts; instead, post when you have a new insight or question. You can also edit your post if it's the most recent and you want to add more information.
[*] Avoid bumping old posts.
[*] Use GameBot to post alcumus questions.
[*] If you need general MATHCOUNTS/math competition advice, check out the threads below.
[*] Don't post other users' real names.
[*] Advertisements are not allowed. You can advertise your forum on your profile with a link, on your blog, and on user-created forums that permit forum advertisements.
[/list]

Here are links to more detailed versions of the rules. These are from the older forums, so you can overlook "Classroom math/Competition math only" instructions.
Posting Guidelines
Update on Basic Forum Rules
What belongs on this forum?
How do I write a thorough solution?
How do I get a problem on the contest page?
How do I study for mathcounts?
Mathcounts FAQ and resources
Mathcounts and how to learn

As always, if you have any questions, you can PM me or any of the other Middle School Moderators. Once again, if you see spam, it would help a lot if you filed a report instead of responding :)

Marathons!
Relays might be a better way to describe it, but these threads definitely go the distance! One person starts off by posting a problem, and the next person comes up with a solution and a new problem for another user to solve. Here's some of the frequently active marathons running in this forum:
[list][*]Algebra
[*]Prealgebra
[*]Proofs
[*]Factoring
[*]Geometry
[*]Counting & Probability
[*]Number Theory[/list]
Some of these haven't received attention in a while, but these are the main ones for their respective subjects. Rather than starting a new marathon, please give the existing ones a shot first.

You can also view marathons via the Marathon tag.

Think this list is incomplete or needs changes? Let the mods know and we'll take a look.
368 replies
jellymoop
May 8, 2015
harry1234
May 16, 2018
Inequality with a,b,c,d
GeoMorocco   5
N a minute ago by GeoMorocco
Source: Moroccan Training 2025
Let $ a,b,c,d$ positive real numbers such that $ a+b+c+d=3+\frac{1}{abcd}$ . Prove that :
$$ a^2+b^2+c^2+d^2+5abcd \geq 9 $$
5 replies
GeoMorocco
Apr 9, 2025
GeoMorocco
a minute ago
number theory
Levieee   4
N 2 minutes ago by Safal
Idk where it went wrong, marks was deducted for this solution
$\textbf{Question}$
Show that for a fixed pair of distinct positive integers \( a \) and \( b \), there cannot exist infinitely many \( n \in \mathbb{Z} \) such that
\[
\sqrt{n + a} + \sqrt{n + b} \in \mathbb{Z}.
\]
$\textbf{Solution}$

Let
\[
x = \sqrt{n + a} + \sqrt{n + b} \in \mathbb{N}.
\]
Then,
\[
x^2 = (\sqrt{n + a} + \sqrt{n + b})^2 = (n + a) + (n + b) + 2\sqrt{(n + a)(n + b)}.
\]So:
\[
x^2 = 2n + a + b + 2\sqrt{(n + a)(n + b)}.
\]
Therefore,
\[
\sqrt{(n + a)(n + b)} \in \mathbb{N}.
\]
Let
\[
(n + a)(n + b) = k^2.
\]Assume \( n + a \neq n + b \). Then we have:
\[
n + a \mid k \quad \text{and} \quad k \mid n + b,
\]or it could also be that \( k \mid n + a \quad \text{and} \quad n + b \mid k \).

Without loss of generality, we take the first case:
\[
(n + a)k_1 = k \quad \text{and} \quad kk_2 = n + b.
\]
Thus,
\[
k_1 k_2 = \frac{n + b}{n + a}.
\]
Since \( k_1 k_2 \in \mathbb{N} \), we have:
\[
k_1 k_2 = 1 + \frac{b - a}{n + a}.
\]
For infinitely many \( n \), \( \frac{b - a}{n + a} \) must be an integer, which is not possible.

Therefore, there cannot be infinitely many such \( n \).
4 replies
Levieee
2 hours ago
Safal
2 minutes ago
Sequence and prime factors
USJL   7
N 29 minutes ago by MathLuis
Source: 2025 Taiwan TST Round 2 Independent Study 1-N
Let $a_0,a_1,\ldots$ be a sequence of positive integers with $a_0=1$, $a_1=2$ and
\[a_n = a_{n-1}^{a_{n-1}a_{n-2}}-1\]for all $n\geq 2$. Show that if $p$ is a prime less than $2^k$ for some positive integer $k$, then there exists $n\leq k+1$ such that $p\mid a_n$.
7 replies
USJL
Mar 26, 2025
MathLuis
29 minutes ago
powers sums and triangular numbers
gaussious   4
N 42 minutes ago by kiyoras_2001
prove 1^k+2^k+3^k + \cdots + n^k \text{is divisible by } \frac{n(n+1)}{2} \text{when} k \text{is odd}
4 replies
gaussious
Yesterday at 1:00 PM
kiyoras_2001
42 minutes ago
0!??????
wizwilzo   50
N 3 hours ago by wipid98
why is 0! "1" ??!
50 replies
wizwilzo
Jul 6, 2016
wipid98
3 hours ago
Bogus Proof Marathon
pifinity   7603
N 3 hours ago by MathWinner121
Hi!
I'd like to introduce the Bogus Proof Marathon.

In this marathon, simply post a bogus proof that is middle-school level and the next person will find the error. You don't have to post the real solution :P

Use classic Marathon format:
[hide=P#]a1b2c3[/hide]
[hide=S#]a1b2c3[/hide]


Example posts:

P(x)
-----
S(x)
P(x+1)
-----
Let's go!! Just don't make it too hard!
7603 replies
pifinity
Mar 12, 2018
MathWinner121
3 hours ago
Weird Similarity
mithu542   0
3 hours ago
Is it just me or are the 2023 national sprint #21 and 2025 state target #4 strangely similar?
[quote=2023 Natioinal Sprint #21] A right triangle with integer side lengths has perimeter $N$ feet and area $N$ ft^2. What is the arithmetic mean of all possible values of $N$?[/quote]
[quote=2025 State Target #4]Suppose a right triangle has an area of 20 cm^2 and a perimeter of 40 cm. What is
the length of the hypotenuse, in centimeters?[/quote]
0 replies
mithu542
3 hours ago
0 replies
An algebra math problem
AVY2024   6
N 3 hours ago by Roger.Moore
Solve for a,b
ax-2b=5bx-3a
6 replies
AVY2024
Apr 8, 2025
Roger.Moore
3 hours ago
easy olympiad problem
kjhgyuio   5
N 3 hours ago by Roger.Moore
Find all positive integer values of \( x \) such that
\[
\sqrt{x - 2011} + \sqrt{2011 - x} + 10
\]is an integer.
5 replies
kjhgyuio
Yesterday at 2:00 PM
Roger.Moore
3 hours ago
Mathcounts Nationals Roommate Search
iwillregretthisnamelater   37
N 3 hours ago by MathWinner121
Does anybody want to be my roommate at nats? Every other qualifier in my state is female. :sob:
Respond quick pls i gotta submit it in like a couple of hours.
37 replies
iwillregretthisnamelater
Mar 31, 2025
MathWinner121
3 hours ago
EaZ_Shadow
Apr 6, 2025
derekwang2048
4 hours ago
Math and AI 4 Girls
mkwhe   20
N 5 hours ago by fishchips
Hey everyone!

The 2025 MA4G competition is now open!

Apply Here: https://xmathandai4girls.submittable.com/submit


Visit https://www.mathandai4girls.org/ to get started!

Feel free to PM or email mathandai4girls@yahoo.com if you have any questions!
20 replies
mkwhe
Apr 5, 2025
fishchips
5 hours ago
k real math problems
Soupboy0   60
N Today at 2:12 PM by Soupboy0
Ill be posting questions once in a while. Here's the first question:

What fraction of numbers from $1$ to $1000$ have the digit $7$ and are divisible by $3$?
60 replies
Soupboy0
Mar 25, 2025
Soupboy0
Today at 2:12 PM
Website to learn math
hawa   29
N Today at 5:50 AM by Andrew2019
Hi, I'm kinda curious what website do yall use to learn math, like i dont find any website thats fun to learn math
29 replies
hawa
Apr 9, 2025
Andrew2019
Today at 5:50 AM
Constructing a convex k-gon without parallel sides
WakeUp   8
N Jan 6, 2025 by cursed_tangent1434
Source: All-Russian Olympiad 2012 Grade 9 Day 1
A regular $2012$-gon is inscribed in a circle. Find the maximal $k$ such that we can choose $k$ vertices from given $2012$ and construct a convex $k$-gon without parallel sides.
8 replies
WakeUp
May 31, 2012
cursed_tangent1434
Jan 6, 2025
Constructing a convex k-gon without parallel sides
G H J
Source: All-Russian Olympiad 2012 Grade 9 Day 1
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
WakeUp
1347 posts
#1 • 2 Y
Y by Adventure10, Mango247
A regular $2012$-gon is inscribed in a circle. Find the maximal $k$ such that we can choose $k$ vertices from given $2012$ and construct a convex $k$-gon without parallel sides.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
WakeUp
1347 posts
#2 • 3 Y
Y by BakyX, Adventure10, and 1 other user
This seems a bit easy for the ARO, so maybe there is a flaw in my proof...

But let the 2012-gon be $A_1A_2\ldots A_{2012}$. Consider the sets $S_i$ of $4$ points $\{A_{2i+1},A_{2i+2},A_{2i+1007}A_{2i+1008}\}$ for $i=0,1,2,\ldots ,502$, which partition the vertices of $2012$-gon (indices are taken modulo $2012$). If there exists a set $S_i$ such that all $4$ elements are vertices of the $k$-gon, then both $A_{2i+1},A_{2i+2}$ and $A_{2i+1007}A_{2i+1008}$ are clearly sides of the $k$-gon ("clearly" because the convex hull of the $k$-gon will be a subset of the convex hull of the $2012$-gon). This is a contradiction since $A_{2i+1},A_{2i+2}||A_{2i+1007}A_{2i+1008}$. So from each set $S_i$ a maximum of $3$ vertices can be vertices of the $k$-gon. This gives an upper bound for $k$ of $3\times 503=1509$. This is achievable by considering the $1509$-gon formed by the segments $A_{2012}A_1,A_1A_2\ldots A_{1005}A_{1006}$ and $A_{1006}A_{1008},A_{1008}A_{1010}\ldots ,A_{2010}A_{2012}$.
This post has been edited 1 time. Last edited by WakeUp, Jun 2, 2012, 6:32 PM
Reason: Corrected 1506 --> 1509
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Aluminum
74 posts
#3 • 2 Y
Y by Adventure10, Mango247
WakeUp wrote:
This seems a bit easy for the ARO, so maybe there is a flaw in my proof...

So from each set $S_i$ a maximum of $3$ vertices can be vertices of the $k$-gon. This gives an upper bound for $k$ of $3\times 503=1506$.

Yes, there is a flaw in your proof...$3\times 503=1509$, not $1506$. Luckily, you lose only one mark...
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SmartClown
82 posts
#4 • 2 Y
Y by Adventure10, Mango247
Consider a $n$-gon such that $2|n$.First consider all of its vertices.Let $k$ be the number of sides that have a side that is paralel to them.At first $k=n$.Now we take $2$ edges that share a vertice and we see that there is a pair of paralel sides which also contains a common vertice.We remove that vertice and consider our $n-1$-gon.We see that these $2$ edges can no longer have any paralel sides and we see that the new edge won't have paralel sides neither.Also number of edges is now less for $1$ edge which is a total of $4$ edges that don't have paralel sides so now $k=n-4$.By now taking the $2$ remaining edges with the same trait we can repeat this.This way we will remove $[\frac{n}{4}]$ vertices.The proof that this will get remove minimum nubmer of vertices: Suposse there exists a lesser number of vertices that we can remove.Start removing the vertices of the original one to obtain this one.We see that in every step $k$ can't go down by more than $4$ so it is impossible to remove less vertices.
Now applying this in the $n=2012$ we easyily obtain the answer is $\frac{3}{4} \cdot 2012 = 1509$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
va2010
1276 posts
#5 • 1 Y
Y by Adventure10
So if we play around with this for long enough, it becomes tempting to reduce the restraint to no one-arcs opposite. This is in fact enough. After this, we have $n \le 1006$ one-arcs. We now need to cover $(2012-n)$ arcs, and each side must cover at least two arcs, so we have at most $\frac{2012 + n}{2} \le 1509$ sides. This is easily attainable; have two-arcs covering the upper semicircle and have one-arcs covering the bottom semicircle.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Wizard_32
1566 posts
#6 • 3 Y
Y by AlastorMoody, Adventure10, Mango247
Greedy FTW!
WakeUp wrote:
A regular $2012$-gon is inscribed in a circle. Find the maximal $k$ such that we can choose $k$ vertices from given $2012$ and construct a convex $k$-gon without parallel sides.
We will show in general the result for a $4l-\text{gon}.$ We claim that $k \ge l.$ First assume $k<l.$
Define $\varepsilon_{i}$ to be the number of chords with strictly $i-1$ points in between the endpoints on the circle. Now the non-parallel condition implies $\varepsilon_1 \le l.$ Note that the total number of points $=4l=\varepsilon_1+2\varepsilon_2+3\varepsilon_2 +\cdots.$ To see this, for a chord having $m$ point in between, consider the left $m+1$ points out of the total $m+2$ ($m$ in between, and $2$ end points). Then each vertex on the circle is counted exactly once.
\begin{align*}
3l<4l-k=\text{no. of chords}=\varepsilon_1+\varepsilon_2 +\varepsilon_3+ \cdots \le l+\varepsilon_2+\cdots \implies  \varepsilon_2 +\varepsilon_3 \cdots>2l \\
\end{align*}\begin{align*}
\text{Hence}  \quad 4l=\varepsilon_1+2\varepsilon_2+3\varepsilon_3+\cdots>2(\varepsilon_2+\varepsilon_3+\cdots)>4l
\end{align*}a contradiction.

When $k=l,$ the construction is easy; if the points are $P_1, P_2, \cdots P_{4l},$ then draw the chords $P_1P_2, P_2P_3, \cdots P_{2l}P_{2l+1}, P_{2l+1}P_{2l+3}, P_{2l+3}P_{2l+5} \cdots P_{4l-2}P_{4l}.$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
hellomath010118
373 posts
#7 • 1 Y
Y by Exposter
@above there is something wrong in your proof it seems.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
IAmTheHazard
5001 posts
#8
Y by
The answer is $5 \cdot 503=1509$. For a construction, label the vertices $0,\ldots,2011$ in clockwise order, and take vertices $0,1,\ldots,1005,1006,1008,\ldots,2010$. Edges $\overline{ab}$ and $\overline{cd}$ are parallel iff $a+b \equiv c+d \pmod{2012}$. Note that all edges $\overline{ab}$ where $a+1=b$ have $a+b \pmod{2012}$ unique, as with all edges where $a+2=b$, which covers all edges. Furthermore, since $a+b$ is odd in the first case and even in the second, there are no overlaps "between" groups either, as desired.
For the bound, define the pseudolength of an edge $\overline{ab}$, where $b$ is clockwise along the polygon from $a$, to be $b-a \pmod{2012}$, and define the pseudoperimeter of a polygon formed from vertices of our $2012$-gon in the obvious way. Suppose that we have $x$ edges of odd pseudolength and $y$ edges of even pseudolength, so we wish to maximize $x+y$. Obviously, the pseudoperimeter of the polygon formed is always $2012$, so $x+2y \leq 2012$. Furthermore, the pseudolength of an edge $\overline{ab}$ has the same parity as $a+b \pmod{2012}$, so every odd-pseudolength edge must occupy an odd residue class modulo $2012$. Since there are $1006$ of these, we have $x \leq 1006$. Hence
$$x+y=\frac{(x+2y)+x}{2}\leq \frac{2012+1006}{2}=1509$$as desired. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
cursed_tangent1434
589 posts
#9
Y by
Solved with stillwater_25. We solve the more general problem for an arbitrary regular $4n-$gon. We claim that the maximum number of vertices we can pick is $3n$. Label the vertices $0,1,\dots , 4n-1$ in the clockwise direction. It is known that edges $\overline{ab}$ and $\overline{cd}$ are parallel if and only if $a+b \equiv c+d \pmod{2012}$.

Construction : Consider the polygon formed by joining vertices $0,1,2,\dots , 2n , 2n+2 , \dots , 4n-2,0$.

Proof : First it is clear that the above set of vertices $\mathcal{V}$ has $3n$ elements. Now, note that the first $2n$ sides (in the first 'half' of our $4n-$gon) are non-parallel among themselves quite clearly. Similarly the last $n$ sides are also non-parallel among themselves. Also one of the first sides and one of the last sides cannot be parallel. This is because the last sides are of the form $\overline{c(c+2)}$ and the first sides are of the form $\overline{a(a+1)}$, so
\[a+(a+1) = 2a+1 \equiv 1 \not \equiv 0 \equiv 2c +2 = c + (c+2) \pmod{2}\]and since $2\mid 4n$ this implies that they are also distinct $\pmod{4n}$ so the parallel condition is not satisfied.

For the bound, starting from vertex $0$ pair the vertices with its neighbors. For example, we pair $0-1$ , $2-3$ , $\dots $ , $4n-1,4n$. For any pair $P$ let its antipodal pair $P'$ denote the pair joining the two vertices diametrically opposite to the points in pair $P$. Note that if a pair $P \in \mathcal{V}$ it must be a side of our polygon as there are no other vertices between the two vertices in $P$. Thus, all four vertices in $P$ and $P'$ cannot be in $\mathcal{V}$ since $P\parallel P'$ quite clearly. Thus, out of these 4 points at most 3 can be in our polygon, which summing across all pairs implies that we can have at most $3n$ vertices in $\mathcal{V}$ and we are done.
Z K Y
N Quick Reply
G
H
=
a