Y by Adventure10, Mango247
1. Prove that ![$\sum\limits_{n=0}^{+\infty }{\arctan \left( \frac{x}{{{n}^{2}}+1} \right)}=\frac{\arctan x}{2}+\arctan \left( \frac{\tan \left( \pi \sqrt[4]{1+{{x}^{2}}}\sin \left( \frac{\arctan x}{2} \right) \right)}{\tanh \left( \pi \sqrt[4]{1+{{x}^{2}}}\cos \left( \frac{\arctan x}{2} \right) \right)} \right)$](//latex.artofproblemsolving.com/5/d/4/5d4642c066169cc3b83d5735f5ee33da15a285d9.png)
2. Prove that![$\sum\limits_{n=0}^{+\infty }{\arctan \left( \frac{x}{{{n}^{2}}-1} \right)}=\frac{\arctan x}{2}+\arctan \left( \frac{\tan \left( \pi \sqrt[4]{1+{{x}^{2}}}\cos \left( \frac{\arctan x}{2} \right) \right)}{\tanh \left( \pi \sqrt[4]{1+{{x}^{2}}}\sin \left( \frac{\arctan x}{2} \right) \right)} \right)$](//latex.artofproblemsolving.com/d/6/9/d69ce4593fd7e49127ad4f4e9e3ae2ffad64a2d9.png)
![$\sum\limits_{n=0}^{+\infty }{\arctan \left( \frac{x}{{{n}^{2}}+1} \right)}=\frac{\arctan x}{2}+\arctan \left( \frac{\tan \left( \pi \sqrt[4]{1+{{x}^{2}}}\sin \left( \frac{\arctan x}{2} \right) \right)}{\tanh \left( \pi \sqrt[4]{1+{{x}^{2}}}\cos \left( \frac{\arctan x}{2} \right) \right)} \right)$](http://latex.artofproblemsolving.com/5/d/4/5d4642c066169cc3b83d5735f5ee33da15a285d9.png)
2. Prove that
![$\sum\limits_{n=0}^{+\infty }{\arctan \left( \frac{x}{{{n}^{2}}-1} \right)}=\frac{\arctan x}{2}+\arctan \left( \frac{\tan \left( \pi \sqrt[4]{1+{{x}^{2}}}\cos \left( \frac{\arctan x}{2} \right) \right)}{\tanh \left( \pi \sqrt[4]{1+{{x}^{2}}}\sin \left( \frac{\arctan x}{2} \right) \right)} \right)$](http://latex.artofproblemsolving.com/d/6/9/d69ce4593fd7e49127ad4f4e9e3ae2ffad64a2d9.png)
This post has been edited 1 time. Last edited by pprime, May 28, 2018, 10:58 PM
Reason: typing error
Reason: typing error
Stay ahead of learning milestones! Enroll in a class over the summer!
Something appears to not have loaded correctly.