During AMC testing, the AoPS Wiki is in read-only mode. No edits can be made.

Search results

  • <math>\delta x'(t)=v(t)</math> <math>v'(t)=a(t)</math>
    9 KB (1,355 words) - 06:29, 29 September 2021
  • Case V) <math>a+b=5c\Rightarrow (5a-1)(5b-1)=126</math> for which there are 2 solu
    2 KB (332 words) - 08:37, 30 December 2021
  • ...{R} </math> be an [[inner product]]. Then for any <math> \mathbf{a,b} \in V </math>,
    11 KB (1,952 words) - 15:38, 29 December 2021
  • ...system at all, used certain letters to represent certain values (e.g. I=1, V=5, X=10, L=50, C=100, D=500, M=1000). Imagine how difficult it would be to
    4 KB (547 words) - 16:23, 30 December 2020
  • ...\,\,y\,\,z\,\,...)</math>. The magnitude of a vector, denoted <math>\|\vec{v}\|</math>, is found simply by ...d by them, <math>\|\vec{v}+\vec{w}\|^2=\|\vec{v}\|^2+\|\vec{w}\|^2+2\|\vec{v}\|\|\vec{w}\|\cos\theta</math>.
    7 KB (1,265 words) - 12:22, 14 July 2021
  • ...aQ</math> and <math>|qx-(\tilde\beta P-\tilde\alpha v)|\le\tilde\alpha|ux+v|+\tilde\beta|Qx-P|\le ...\le \frac {6a^2}q</math>. Thus, setting <math>p=\tilde\beta P-\tilde\alpha v</math>, we get <math>\left|x-\frac pq\right|<\frac {6a^2}{q^2}</math>.
    7 KB (1,290 words) - 11:18, 30 May 2019
  • ...and let <math>I</math> be a [[prime ideal]] of <math>R</math>. Then <math>V(I)=\{p\in\mathbb{A}^n\mid f(p)=0\mathrm{\ for\ all\ } f\in I\}</math> is ca
    2 KB (361 words) - 00:59, 24 January 2020
  • ...of [[vertex|vertices]], [[edge]]s, and [[face]]s, respectively. Then <math>V-E+F=2</math>.
    970 bytes (132 words) - 21:36, 1 February 2021
  • ! scope="row" | '''Mock AMC V'''
    57 KB (6,925 words) - 01:50, 2 January 2022
  • Let <math>U=2\cdot 2004^{2005}</math>, <math>V=2004^{2005}</math>, <math>W=2003\cdot 2004^{2004}</math>, <math>X=2\cdot 20 <math>\text{(A) } U-V \qquad \text{(B) } V-W \qquad \text{(C) } W-X \qquad \text{(D) } X-Y \qquad \text{(E) } Y-Z \qqu
    13 KB (1,953 words) - 21:24, 22 November 2021
  • ...ngles of a pentagon. Suppose that <math>v < w < x < y < z</math> and <math>v, w, x, y, </math> and <math>z</math> form an arithmetic sequence. Find the
    10 KB (1,548 words) - 12:06, 19 February 2020
  • Our original solid has volume equal to <math>V = \frac13 \pi r^2 h = \frac13 \pi 3^2\cdot 4 = 12 \pi</math> and has [[surf Our original solid <math>V</math> has [[surface area]] <math>A_v = \pi r^2 + \pi r \ell</math>, where
    5 KB (839 words) - 21:12, 16 December 2015
  • ...>P^{}_{}</math> pentagonal faces meet. What is the value of <math>100P+10T+V\,</math>?
    8 KB (1,275 words) - 05:55, 2 September 2021
  • .... Let <math>m/n</math> be the probability that <math>\sqrt{2+\sqrt{3}}\le |v+w|</math>, where <math>m</math> and <math>n</math> are relatively prime pos
    7 KB (1,098 words) - 16:08, 25 June 2020
  • ...he area of pentagon <math>ABCDE</math> is <math>451</math>. Find <math>u + v</math>.
    7 KB (1,208 words) - 18:16, 2 January 2022
  • ...ine{UV}</math> with <math>U</math> on <math>\overline{PQ}</math> and <math>V</math> on <math>\overline{QR}</math> such that <math>\overline{UV}</math> i
    8 KB (1,282 words) - 20:12, 19 February 2019
  • ...Using the formula for the volume of a regular tetrahedron, which is <math>V = \frac{\sqrt{2}S^3}{12}</math>, where S is the side length of the tetrahed <math>V = \frac{1}{2} \cdot \frac{\sqrt{2} \cdot (12\sqrt{2})^3}{12} = \boxed{288}<
    5 KB (865 words) - 09:17, 20 January 2021
  • ...rom vertex <math>V</math> and ending at vertex <math>A,</math> where <math>V\in\{A,B,C,D\}</math> and <math>k</math> is a positive integer. We wish to f ...math>V</math> to <math>A</math> and the paths from <math>A</math> to <math>V</math> have one-to-one correspondence. So, we must get <cmath>A_k+B_k+C_k+D
    11 KB (1,885 words) - 03:20, 19 October 2021
  • ...th>h = 15</math>, <math>l = 5</math>, <math>w = 10</math>. Therefore <math>V = 5 \cdot 10 \cdot 15 = \boxed{750}</math>
    2 KB (346 words) - 12:13, 22 July 2020
  • ...(x)</math> are also roots of <math>f(x)</math>. Let these roots be <math>u,v</math>. We get the system If we multiply the first equation by <math>v^{16}</math> and the second by <math>u^{16}</math> we get <cmath>\begin{alig
    8 KB (1,350 words) - 13:13, 17 September 2021
  • ...lies on exactly one vertex of a square/hexagon/octagon, we have that <math>V = 12 \cdot 4 = 8 \cdot 6 = 6 \cdot 8 = 48</math>. ...h of its endpoints, the number of edges <math>E</math> is <math>\frac{3}{2}V = 72</math>.
    5 KB (811 words) - 18:10, 25 January 2021
  • Finally, we substitute <math>h</math> into the volume equation to find <math>V = 6\sqrt{133}\left(\frac{99}{\sqrt{133}}\right) = \boxed{594}</math>. ...ave the base area as <math>18\sqrt {133}</math>. Thus, the volume is <math>V = \frac {1}{3}\cdot18\sqrt {133}\cdot\frac {99}{\sqrt {133}} = 6\cdot99 = 5
    7 KB (1,085 words) - 20:56, 28 December 2021
  • ...th>(u,v)</math> and <math>(p,q)</math>, then <math>u=2r-p</math> and <math>v=2s-q</math>. So we start with the point they gave us and work backwards. We
    4 KB (611 words) - 10:31, 23 August 2020
  • ...<math>P</math> pentagonal faces meet. What is the value of <math>100P+10T+V</math>? ...ge). Thus, <math>E=60</math>. Finally, using Euler's formula we have <math>V=E-30=30</math>.
    4 KB (623 words) - 19:32, 15 February 2021
  • ...(-20/sqrt(3),0)-2*u+i*u--(0,20)--(20/sqrt(3),0)+2*d-i*d;draw(shift(0,-2*i)*v);} ...(-20/sqrt(3),0)-2*u+i*u--(0,20)--(20/sqrt(3),0)+2*d-i*d);draw(shift(0,2*i)*v);}
    4 KB (721 words) - 15:14, 8 March 2021
  • ...as <math>\vec{u}\cdot \vec{v} = \parallel \vec{u}\parallel \parallel \vec{v}\parallel \cos \theta</math>, we will be able to solve for <math>\cos \thet <cmath>\vec{v} = \overrightarrow{OB}\times \overrightarrow{OC} - \left|\begin{array}{ccc}
    8 KB (1,172 words) - 13:34, 27 October 2021
  • ...c{m}{n}</math> be the [[probability]] that <math>\sqrt{2+\sqrt{3}}\le\left|v+w\right|</math>, where <math>m</math> and <math>n</math> are [[relatively p Now, let <math>v</math> be the root corresponding to <math>m\theta=2m\pi/1997</math>, and le
    4 KB (714 words) - 13:22, 14 October 2021
  • ...coordinates of the vertex of the resulting pyramid. Call this point <math>V</math>. Clearly, the height of the pyramid is <math>z</math>. The desired v ...= QC</math>. We then use distance formula to find the distances from <math>V</math> to each of the vertices of the medial triangle. We thus arrive at a
    5 KB (805 words) - 21:34, 28 May 2021
  • (Computational) The volume of a cone can be found by <math>V = \frac{\pi}{3}r^2h</math>. In the second container, if we let <math>h',r'< From the formula <math>V=\frac{\pi r^2h}{3}</math>, we can find that the volume of the container is
    3 KB (544 words) - 21:20, 30 July 2017
  • ...rea of [[pentagon]] <math>ABCDE</math> is <math>451</math>. Find <math>u + v</math>. D(D(MP("A\ (u,v)",A,(1,0)))--D(MP("B",B,N))--D(MP("C",C,N))--D(MP("D",D))--D(MP("E",E))--cy
    3 KB (434 words) - 21:43, 16 May 2021
  • ...ath>P</math> perpendicular to plane <math>ABC</math> can be found as <math>V=(A-C)\times(B-C)=\langle 8, 12, 24 \rangle</math> ...r each pyramid(base times height divided by 3) we have <math>\dfrac{rF}{3}=V</math>. The surface area of the pyramid is <math>\dfrac{6\cdot{4}+6\cdot{2}
    6 KB (937 words) - 16:34, 26 December 2021
  • ...line{CA}</math> and <math>\overline{AB}</math>, respectively. Let <math>U,V</math> be the intersections of line <math>EF</math> with line <math>MN</mat
    3 KB (585 words) - 10:12, 16 March 2016
  • ...another identical wedge and sticking it to the existing one). Thus, <math>V=\dfrac{6^2\cdot 12\pi}{2}=216\pi</math>, so <math>n=\boxed{216}</math>.
    941 bytes (159 words) - 02:39, 6 December 2019
  • triple S=(1,0,0), T=(2,0,2), U=(8,6,8), V=(8,8,6), W=(2,2,0), X=(6,8,8); ...-U--V--W--cycle); draw((0,0,1)--T--U--X--(0,2,2)--cycle); draw((0,1,0)--W--V--X--(0,2,2)--cycle);
    4 KB (518 words) - 14:01, 31 December 2021
  • ...ine{UV}</math> with <math>U</math> on <math>\overline{PQ}</math> and <math>V</math> on <math>\overline{QR}</math> such that <math>\overline{UV}</math> i pair P = (0,0), Q = (90, 0), R = (0, 120), S=(0, 60), T=(45, 60), U = (60,0), V=(60, 40), O1 = (30,30), O2 = (15, 75), O3 = (70, 10);
    6 KB (896 words) - 09:13, 22 May 2020
  • <math>\int u\, dv=uv-\int v\,du</math> ...math>u</math> will show up as <math>du</math> and <math>dv</math> as <math>v</math> in the integral on the RHS, u should be chosen such that it has an "
    1 KB (231 words) - 15:19, 18 May 2021
  • Specifically, let <math>u, v : \mathbb{R \times R \to R}</math> be definted <cmath> u(x,y) = \text{Re}\,f(x+iy), \qquad v(x,y) = \text{Im}\,f(x+iy) . </cmath>
    9 KB (1,537 words) - 20:04, 26 July 2017
  • https://www.youtube.com/watch?v=BBD66Q3KXuI ...enter connecting the midpoints of the two sides of the small triangle with V as an endpoint. Find, with proof, the expected value of the number of full
    4 KB (719 words) - 18:41, 25 November 2020
  • the vertex <math>V</math> to this path? MP("P",(-1,0),W);MP("V",(-.5,2.4),N);
    3 KB (560 words) - 18:23, 10 March 2015
  • | <math>\left(u(x)\times v(x)\right)'=u(x)v'(x)+u'(x)v(x)</math> | <math>\left(\frac{u(x)}{v(x)}\right)' = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}</math>
    3 KB (504 words) - 18:23, 3 March 2010
  • *Given a weighted, undirected graph <math>G = (V,E)</math> and two vertices <math>s, t \in E</math>, does there exist a path
    6 KB (1,104 words) - 14:11, 25 October 2017
  • ...for which <cmath>\left\vert\sum_{j=m+1}^n(a_j-(v+1))\right\vert\le (T-v)\,v \le \left(\frac T 2\right)^2</cmath>for all integers <math>m</math> and <ma ...is:<cmath>\sum_{i=1}^v (T-v+i) - \sum_{i=1}^v i=\sum_{i=1}^v (T-v)=(T-v)\,v\;. \quad \blacksquare</cmath>
    4 KB (833 words) - 00:33, 31 December 2019
  • ...s had to make change on a purchase of LXIV dollars with bills marked L, X, V and I when handed XC dollars.
    2 KB (365 words) - 19:42, 20 February 2019
  • ...group over a set <math>I</math> and <math>uv = vu</math>, then <math>u^m = v^n</math>, for some [[integer]]s <math>m</math> and <math>n</math>.
    2 KB (454 words) - 16:54, 16 March 2012
  • \text{(V) } 2007 \quad </math> <math>\text{(V) Ying} \quad
    33 KB (5,143 words) - 19:49, 28 December 2021
  • ...ng subset. Hence <cmath>F(n,r)=\frac{1}{\binom{n}{r}} \sum_{v \in B} \deg (v)= \frac{n+1}{r+1}.</cmath>
    5 KB (879 words) - 10:18, 27 June 2020
  • 5 - '''V''' ''(quinque)''
    865 bytes (140 words) - 12:58, 24 March 2019
  • ..., then the [[greatest common factor]] of <math>2^u + 1 </math> and <math>2^v + 1 </math> is 3. ...ath>t </math>, contradicting our assumption that <math>u </math> and <math>v </math> are relatively prime.
    10 KB (1,739 words) - 05:38, 12 November 2019
  • label("V", (2, 6), NE);
    13 KB (1,968 words) - 14:16, 21 October 2021
  • ...ale the triangle with the circumradius by a [[line]]ar scale factor, <math>v</math>. :<math>\frac{65}{8}v=8u</math>
    8 KB (1,321 words) - 11:38, 15 January 2022
  • ...cut off corners is a [[pyramid]], whose volume can be calculated by <math>V = \frac 13 Bh</math>. Use the base as one of the three [[congruency (geomet
    2 KB (319 words) - 13:54, 19 December 2020
  • Call it a vertex set <math>V</math>. <math>10</math> vertices remain outside <math>V</math> and each has to be attached to at least one edge.
    3 KB (438 words) - 04:42, 8 March 2018
  • Let <math>u</math> and <math>v</math> be real numbers such that (u + u^2 + u^3 + \cdots + u^8) + 10u^9 = (v + v^2 + v^3 + \cdots + v^{10}) + 10v^{11} = 8.
    2 KB (326 words) - 17:52, 18 July 2016
  • Chose a vertex, <math>v</math>, for which <math>a</math> is minimal (i.e. out of all maximal elemen ...h>. So then in this special case, we have <math>D = 4</math>, and so <math>V = 2006 \times 4+1</math> (a possible configuration of this size that works
    10 KB (1,878 words) - 13:56, 30 June 2021
  • * The volume <math>V</math> of a regular octahedron with side length <math>a</math> is <math>\fr
    1 KB (155 words) - 11:49, 25 August 2019
  • Let <math>u</math> and <math>v</math> be real numbers such that <cmath> (u + u^2 + u^3 + \cdots + u^8) + 10u^9 = (v + v^2 + v^3 + \cdots + v^{10}) + 10v^{11} = 8. </cmath>
    2 KB (300 words) - 18:16, 18 July 2016
  • ...bstituting yields: <math>20n+25=21(n+1),</math> so <math>n=4</math>, <math>v = 80.</math> Then, we see that the only way Paula can satisfy this rule is
    2 KB (308 words) - 22:21, 27 January 2021
  • Let <math>U=2\cdot 2004^{2005}</math>, <math>V=2004^{2005}</math>, <math>W=2003\cdot 2004^{2004}</math>, <math>X=2\cdot 20 <math>\mathrm {(A)} U-V \qquad \mathrm {(B)} V-W \qquad \mathrm {(C)} W-X \qquad \mathrm {(D)} X-Y \qquad \mathrm {(E)} Y-
    1 KB (139 words) - 01:10, 30 December 2020
  • ...math>, where <math>M</math> is momentum, <math>m</math> is mass, and <math>v</math> is [[velocity]].
    1 KB (188 words) - 21:44, 10 October 2013
  • ...may be defined using ordered pairs from the [[product set]] <math>V \times V</math>. ...ay the edges <math>e</math> and <math>f</math> are ''coincident'' at <math>v</math>.
    8 KB (1,428 words) - 09:26, 27 August 2020
  • https://www.youtube.com/watch?v=OT42J21ZNC8&feature=youtu.be
    5 KB (840 words) - 18:32, 6 September 2021
  • ...uilateral triangle with sides of length three units. <math>U</math>, <math>V</math>, <math>W</math>, <math>X</math>, <math>Y</math>, and <math>Z</math> label("$V$",(-1/3,sqrt(3)/6),NW);
    15 KB (2,057 words) - 18:13, 10 March 2015
  • ...he area <math>(A)</math> of the sail and the square of the velocity <math>(V)</math> of the wind. The pressure on a square foot is <math>1</math> pound
    23 KB (3,641 words) - 12:47, 23 July 2021
  • ...s of a [[pentagon]]. Suppose that <math>v < w < x < y < z</math> and <math>v, w, x, y, </math> and <math>z</math> form an [[arithmetic sequence]]. Find ...ath> triangles) is <math>3 \cdot 180 = 540^{\circ}</math>. If we let <math>v = x - 2d, w = x - d, y = x + d, z = x+2d</math>, it follows that
    2 KB (263 words) - 18:15, 20 August 2019
  • <math>V = \pi \left(\frac{3}{\pi}\right)^2\cdot 6\sin\theta</math>
    1 KB (166 words) - 15:35, 15 February 2021
  • label("V",(1.5,.3),N); ...bf{(A)}\ \text{Z} \qquad \textbf{(B)}\ \text{U} \qquad \textbf{(C)}\ \text{V} \qquad \textbf{(D)}\ \ \text{W} \qquad \textbf{(E)}\ \text{Y}</math>
    12 KB (1,670 words) - 16:42, 24 November 2021
  • ...>. Y is on <math>\overline {ST}</math>, dividing <math>SY:YT = 2:1</math>. V is on <math>\overline {XY}</math>, dividing <math>XV:VY = 1:2</math>. It is
    6 KB (909 words) - 00:31, 21 June 2019
  • ...le ADB = \angle BDC = \angle CDA = 120^\circ</math>. Prove that <math>x=u+v+w</math>. label("$v$",(B+D)/2,N);
    7 KB (1,221 words) - 17:57, 3 July 2013
  • ...math> Substituting in <math>P</math> yields <cmath>-a^2p(1-p)+vp=0\implies v = a^2(1-p).</cmath> Substituting in <math>B_1</math> yields
    6 KB (1,117 words) - 00:17, 11 October 2021
  • ...me of a pyramid, <math>V = \frac{1}{3} \cdot B \cdot h</math>, where <math>V</math> is the volume, <math>B</math> is the area of the base and <math>h</m
    7 KB (1,129 words) - 16:19, 30 January 2016
  • ...space]] of all such functions. Define the linear operator <math>A : V \to V</math> as <cmath>(Af)(v) = \sum_{v \sim w} f(v) - f(w)</cmath>
    13 KB (2,414 words) - 13:37, 11 July 2016
  • pair v(int n){ return dir(n * 60); } ...0))--MP("B",v(1),N)--MP("C",v(2),N)--MP("D",v(3),SW)--MP("E",v(4))--MP("F",v(5))--cycle);
    3 KB (425 words) - 21:32, 5 December 2020
  • ...ing the Hamiltonian, usually of the form <math>-\frac{\hbar^2}{2m}\Delta + V</math> where <math>\Delta</math> is the relevant Laplace(-Beltrami) operato
    417 bytes (69 words) - 13:32, 21 April 2018
  • *Didion 1870. ''Notice sur la vie et les ouvrages du général J. V. Poncelet''
    2 KB (253 words) - 10:41, 19 December 2018
  • ...ble positions of the midpoints <math>U</math> of <math>AB</math> and <math>V</math> of <math>AC</math> as <math>A</math> varies?</li> We claim that all points <math>U,V</math> lie on a circle centered at the midpoint of <math>OP</math>, <math>M
    3 KB (545 words) - 10:32, 30 January 2021
  • ...uilateral triangle with sides of length three units. <math>U</math>, <math>V</math>, <math>W</math>, <math>X</math>, <math>Y</math>, and <math>Z</math> label("$V$",(-1/3,sqrt(3)/6),NW);
    1 KB (188 words) - 13:38, 20 April 2014
  • ...nd there is a morphism <math>U \to V</math> if and only if <math>U \subset V</math>.
    5 KB (792 words) - 18:01, 7 April 2012
  • ...each step in the process we remove a number of vertices from the set <math>V</math> if their exists an edge sorrounding it which is labelled. Additiona ...of the vertices not in <math>V</math>. Notice that since <math>v_1,v_n\in V</math> the edge connecting <math>v_0</math> and <math>v_1</math> and the ed
    4 KB (668 words) - 16:45, 30 January 2021
  • ..., there exists a <math>v\in\{1,2,...,m!\}</math> such that <math>t\equiv f{v}\pmod{m!}</math>. So, let <math>t\equiv f(v_t)\pmod{m!}</math>. Consider
    2 KB (416 words) - 10:09, 8 May 2011
  • ...h>b = 2\sin u</math> and <math>c = 2\sin v</math>, where <math>0^\circ < u,v < 90^\circ</math>. Then <cmath>a = 2(-\sin u\sin v + \cos u\cos v) = 2\cos (u + v),</cmath>
    4 KB (799 words) - 17:28, 1 July 2015
  • <math>\dfrac{t_1}{\sqrt{1-v^2/c^2}}=t_2</math> <math>v</math> is the relative velocity the ovject is moving to the observer.
    1 KB (261 words) - 23:19, 30 January 2021
  • It is equivalent to <math>\gamma=\dfrac{1}{\sqrt{1-v^2/c^2}}</math>
    226 bytes (34 words) - 10:23, 5 October 2012
  • By another person ^v^
    5 KB (807 words) - 17:37, 25 June 2021
  • ...le ADB = \angle BDC = \angle CDA = 120^\circ</math>. Prove that <math>x=u+v+w</math>. label("$v$",(B+D)/2,N);
    3 KB (427 words) - 17:55, 3 July 2013
  • ...and diagonal are the same. Five of these numbers are represented by <math> v </math>, <math> w </math>, <math> x </math>, <math> y </math>, and <math> z label("$v$",(0.5,2.5));
    14 KB (1,982 words) - 11:59, 24 November 2021
  • ...ath>. Let the volume of the tetrahedron be <math>V</math>. Therefore <math>V=\frac{abc}{6}</math>. ...{6V}</math>, or <math>6V\leq \frac{S^3(\sqrt{2}-1)^3}{27}</math>, or <math>V\leq \frac{S^3(\sqrt{2}-1)^3}{162}</math>, with equality only when <math>a=b
    2 KB (358 words) - 22:15, 18 July 2016
  • label("V",(1.5,.3),N); ...>\text{(A)}\ \text{Z} \qquad \text{(B)}\ \text{U} \qquad \text{(C)}\ \text{V} \qquad \text{(D)}\ \ \text{W} \qquad \text{(E)}\ \text{Y}</math>
    2 KB (269 words) - 16:05, 3 July 2013
  • <math>v = \frac{200}{b}</math> ...gain <math>b</math> more edges. So the total number of new edges is <math>v*b \Rightarrow \frac{200}{b}*b \Rightarrow 200</math>. It doesn't matter how
    9 KB (1,549 words) - 07:27, 7 September 2021
  • ...of sittings is in the form <math>N*(5!)^3</math> because for each <math>M, V, E</math> sequence we have <math>5!</math> arrangements within the Ms, Vs, ...members must sit in cycles of M, V, E, but not necessarily with one M, one V, and one E in each cycle(for example, MMVVVE, MVVVEEE, MMMVVVEE all count a
    3 KB (578 words) - 12:46, 29 November 2021
  • ...en <math>1</math> and <math>167</math>, inclusive, and for each such <math>v</math> we have exactly one valid <math>x</math>. Hence in this case there a
    5 KB (845 words) - 14:45, 28 December 2020
  • Let <math>V = \overline{NM} \cap \overline{AC}</math> and <math>W = \overline{NM} \cap
    9 KB (1,610 words) - 19:52, 9 August 2020
  • ...h> intersect <math>\omega</math> at <math>K</math> and another point <math>V</math>, as shown: pair V = IP(L(P, S, 10, 10), circle, 1);
    6 KB (973 words) - 18:24, 18 October 2018
  • <cmath>T=32-3k\Rightarrow V=24-4k.</cmath>
    807 bytes (122 words) - 23:08, 4 July 2013
  • If <math>y(x) = u(x)+v(x)</math> then <math>\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}</math>. ...x) = u(x) \cdot v(x)</math> then <math>\frac{dy}{dx} = u(x)\frac{dv}{dx} + v(x)\frac{du}{dx}</math>.
    2 KB (288 words) - 23:53, 25 March 2018
  • ...ath> is a basis for <math>L</math> over <math>K</math>, we can write <math>v = \sum_ia_i\alpha_i</math>, where <math>a_1,a_2,\ldots,a_n\in K</math>. And <cmath>v = \sum_ia_i\alpha_i = \sum_i\left(\sum_jb_{ij}\beta_j\right)\alpha_i = \sum
    3 KB (567 words) - 07:42, 21 August 2009
  • ...[[inverse]] in <math>R</math>, that is, if there is another element <math>v\in R</math> such that <math>uv=vu=1</math>.
    446 bytes (86 words) - 19:16, 23 August 2009
  • ...times more water than Logan's miniature. The volume of a sphere is: <math>V=\dfrac{4}{3}\pi r^3</math>. Since we are comparing the heights (m), we shou
    1 KB (198 words) - 17:08, 28 June 2021
  • <cmath>= x^6-2ux^5+(u^2+2v)x^4-(2uv+2w)x^3+(2uw+v^2)x^2-2vwx+w^2</cmath> v &= 2\\
    5 KB (835 words) - 14:18, 5 August 2021
  • <math>\sum_{closed loop} \Delta V = 0</math>
    406 bytes (67 words) - 19:36, 7 March 2014
  • ...non-zero vector that satisfies the relation <math>A\bold{v} = \lambda\bold{v}</math>, for some scalar <math>\lambda \in K</math>. In other words, applyi ...bold{v} = \lambda \bold{v}</math>, then <math>\lambda I \bold{v} - A \bold{v} = \bold{O}</math>. But then, the column vectors of <math>\lambda I - A</ma
    20 KB (3,415 words) - 22:26, 9 October 2021

View (previous 100 | next 100) (20 | 50 | 100 | 250 | 500)

Invalid username
Login to AoPS