Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Proving a group is abelian
dragosgamer12   6
N an hour ago by ysharifi
Source: Florin Stanescu, Gazeta Matematica seria B Nr.2/2025
Let $(G,\cdot)$ be a group, $K$ a subgroup of $G$ and $f : G \rightarrow G$ an endomorphism with the following property:
There exists a nonempty set $H\subset	G$ such that for any $k \in G \setminus K$ there exist $h  \in H$ with $f(h)=k$ and $z \cdot h= h \cdot z$, for any $z \in H$.

a)Prove that $(G, \cdot)$ is abelian.
b)If, additionally, $H$ is a subgroup of $G$, prove that $H=G$
6 replies
dragosgamer12
Thursday at 10:06 PM
ysharifi
an hour ago
3 numbers have their fractional parts lying in the interval
orl   13
N 2 hours ago by ezpotd
Source: IMO Shortlist 2000, A2
Let $ a, b, c$ be positive integers satisfying the conditions $ b > 2a$ and $ c > 2b.$ Show that there exists a real number $ \lambda$ with the property that all the three numbers $ \lambda a, \lambda b, \lambda c$ have their fractional parts lying in the interval $ \left(\frac {1}{3}, \frac {2}{3} \right].$
13 replies
orl
Aug 10, 2008
ezpotd
2 hours ago
IMO 2016 Problem 2
shinichiman   65
N 2 hours ago by Mathgloggers
Source: IMO 2016 Problem 2
Find all integers $n$ for which each cell of $n \times n$ table can be filled with one of the letters $I,M$ and $O$ in such a way that:
[LIST]
[*] in each row and each column, one third of the entries are $I$, one third are $M$ and one third are $O$; and [/*]
[*]in any diagonal, if the number of entries on the diagonal is a multiple of three, then one third of the entries are $I$, one third are $M$ and one third are $O$.[/*]
[/LIST]
Note. The rows and columns of an $n \times n$ table are each labelled $1$ to $n$ in a natural order. Thus each cell corresponds to a pair of positive integer $(i,j)$ with $1 \le i,j \le n$. For $n>1$, the table has $4n-2$ diagonals of two types. A diagonal of first type consists all cells $(i,j)$ for which $i+j$ is a constant, and the diagonal of this second type consists all cells $(i,j)$ for which $i-j$ is constant.
65 replies
shinichiman
Jul 11, 2016
Mathgloggers
2 hours ago
Proving the line is indeed a radical axis
azzam2912   1
N 2 hours ago by JARP091
Given an acute triangle ABC with altitudes AD, BE, and CF intersecting at point H. Let O be the center of the circumcircle of triangle ABC. The Tangents to the circumcircle of triangle ABC from points B and C intersect at point T. Let K and L be reflections of point O on lines AB and AC respectively. The circumcircles of triangle DFK and DEL intersect a second time at point P. Prove that points P, D, and T are collinear.
1 reply
azzam2912
2 hours ago
JARP091
2 hours ago
A point on BC
jayme   0
3 hours ago
Source: Own ?
Dear Mathlinkers,

1. ABC a triangle
2. 0 the circumcircle
3. D the pole of BC wrt 0
4. B', C' the symmetrics of B, C wrt AC, AB
5. 1b, 1c the circumcircles of the triangles BB'D, CC'D
6. T the second point of intersection of the tangent to 1c at D with 1b.

Prove : B, C and T are collinear.

Sincerely
Jean-Louis
0 replies
jayme
3 hours ago
0 replies
Balkan Mathematical Olympiad
ABCD1728   0
3 hours ago
Can anyone provide the PDF version of the book "Balkan Mathematical Olympiads" by Mircea Becheanu and Bogdan Enescu (published by XYZ press in 2014), thanks!
0 replies
ABCD1728
3 hours ago
0 replies
A sharp one with 3 var
mihaig   4
N 3 hours ago by arqady
Source: Own
Let $a,b,c\geq0$ satisfying
$$\left(a+b+c-2\right)^2+8\leq3\left(ab+bc+ca\right).$$Prove
$$ab+bc+ca+abc\geq4.$$
4 replies
mihaig
May 13, 2025
arqady
3 hours ago
Find all p(x) such that p(p) is a power of 2
truongphatt2668   5
N 4 hours ago by tom-nowy
Source: ???
Find all polynomial $P(x) \in \mathbb{R}[x]$ such that:
$$P(p_i) = 2^{a_i}$$with $p_i$ is an $i$ th prime and $a_i$ is an arbitrary positive integer.
5 replies
truongphatt2668
Thursday at 1:05 PM
tom-nowy
4 hours ago
Interesting problem from a friend
v4913   10
N 4 hours ago by OronSH
Source: I'm not sure...
Let the incircle $(I)$ of $\triangle{ABC}$ touch $BC$ at $D$, $ID \cap (I) = K$, let $\ell$ denote the line tangent to $(I)$ through $K$. Define $E, F \in \ell$ such that $\angle{EIF} = 90^{\circ}, EI, FI \cap (AEF) = E', F'$. Prove that the circumcenter $O$ of $\triangle{ABC}$ lies on $E'F'$.
10 replies
v4913
Nov 25, 2023
OronSH
4 hours ago
IMO ShortList 2002, algebra problem 3
orl   25
N 4 hours ago by Mathandski
Source: IMO ShortList 2002, algebra problem 3
Let $P$ be a cubic polynomial given by $P(x)=ax^3+bx^2+cx+d$, where $a,b,c,d$ are integers and $a\ne0$. Suppose that $xP(x)=yP(y)$ for infinitely many pairs $x,y$ of integers with $x\ne y$. Prove that the equation $P(x)=0$ has an integer root.
25 replies
orl
Sep 28, 2004
Mathandski
4 hours ago
Inequality on APMO P5
Jalil_Huseynov   41
N 4 hours ago by Mathandski
Source: APMO 2022 P5
Let $a,b,c,d$ be real numbers such that $a^2+b^2+c^2+d^2=1$. Determine the minimum value of $(a-b)(b-c)(c-d)(d-a)$ and determine all values of $(a,b,c,d)$ such that the minimum value is achived.
41 replies
Jalil_Huseynov
May 17, 2022
Mathandski
4 hours ago
Tough integral
Martin.s   3
N Yesterday at 9:42 PM by GreenKeeper
$$\int_0^{\pi/2}\ln(\tan(\theta/2))
\;\frac{4\cos\theta\cos(2\theta)}{4\sin^4\theta+1}\,d\theta.$$
3 replies
Martin.s
May 12, 2025
GreenKeeper
Yesterday at 9:42 PM
Integral
Martin.s   1
N Yesterday at 5:01 PM by Martin.s
$$\int_0^{\pi/6}\arcsin\Bigl(\sqrt{\cos(3\psi)\cos\psi}\Bigr)\,d\psi.$$
1 reply
Martin.s
May 14, 2025
Martin.s
Yesterday at 5:01 PM
integrals
FFA21   3
N Yesterday at 2:48 PM by Rohit-2006
Source: OSSM Comp'25 P1 (HSE IMC qualification)
Find all continuous functions $f:[1,8]\to R$ that:
$\int_1^2f(t^3)^2dt+2\int_1^2sin(t)f(t^3)dt=\frac{2}{3}\int_1^8f(t)dt-\int_1^2(t^2-sin(t))^2dt$
3 replies
FFA21
May 14, 2025
Rohit-2006
Yesterday at 2:48 PM
Inegration stuff, integration bee
Acumlus   8
N Apr 11, 2025 by Silver08
I want to learn how to integrate, I'm a ms student with knowledge about math counts ,amc 10 even tho that want help mebut I don't want to dwell in calc, I just want to learn how to integrate and nothing else like I don't want to study it deep, how can I learn how to integrate its for an integration bee hosted near me its a state uni and I want to join so in the span of 2 months how can I learn to integrate without learning calc like fully
8 replies
Acumlus
Apr 7, 2025
Silver08
Apr 11, 2025
Inegration stuff, integration bee
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Acumlus
17 posts
#1
Y by
I want to learn how to integrate, I'm a ms student with knowledge about math counts ,amc 10 even tho that want help mebut I don't want to dwell in calc, I just want to learn how to integrate and nothing else like I don't want to study it deep, how can I learn how to integrate its for an integration bee hosted near me its a state uni and I want to join so in the span of 2 months how can I learn to integrate without learning calc like fully
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
paxtonw
35 posts
#2
Y by
Do you understand differentiation? You most likely won't be able to understand intergration without first understanding differentiation.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
snake2020
4510 posts
#3
Y by
"Acumlus"
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Acumlus
17 posts
#4
Y by
paxtonw wrote:
Do you understand differentiation? You most likely won't be able to understand intergration without first understanding differentiation.

ill try to learn differentiation, how should I approach this like learning how to integrate
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Acumlus
17 posts
#5
Y by
snake2020 wrote:
"Acumlus"

it was a typo, don't mind the you know what part
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
paxtonw
35 posts
#6
Y by
Acumlus wrote:
paxtonw wrote:
Do you understand differentiation? You most likely won't be able to understand intergration without first understanding differentiation.

ill try to learn differentiation, how should I approach this like learning how to integrate

Khan Acedamty
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Acumlus
17 posts
#7
Y by
thx , bump
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
HacheB2031
396 posts
#8
Y by
You should learn differentiation because:
1. Differentiation is easier than indefinite integration.
2. It has many interesting properties, particularly extrema and MVT.
3. The Fundamental Theorem of Calculus links differentiation and integration.
4. Most integration tricks rely on differentiation because of derivative rules.
Try to learn how to differentiate first.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Silver08
469 posts
#9 • 1 Y
Y by paxtonw
You should definitely learn differentiation first!!

1. Learn the concept of Differentiation rules!! Watch from this Youtube Channel: PatrickJMT
2. Practice differentiation with example problems!! Watch from this Youtube Channel: OrganicChemistryTutor
After that, apply the same procedure for integral concepts: learn first from PatrickJMT, then practice problems from OrganicChemistryTutor.

Then after all that, once your confident and comfortable enough....you can join the dark side :evilgrin:
I have an "integration bee training" series on Youtube which is easy to find, and I made a book for Integration Bee Problem Writers:
https://artofproblemsolving.com/community/c1967976h3218725

I wish you the best of luck!!!
Z K Y
N Quick Reply
G
H
=
a