Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Peer-to-Peer Programs Forum
jwelsh   157
N Dec 11, 2023 by cw357
Many of our AoPS Community members share their knowledge with their peers in a variety of ways, ranging from creating mock contests to creating real contests to writing handouts to hosting sessions as part of our partnership with schoolhouse.world.

To facilitate students in these efforts, we have created a new Peer-to-Peer Programs forum. With the creation of this forum, we are starting a new process for those of you who want to advertise your efforts. These advertisements and ensuing discussions have been cluttering up some of the forums that were meant for other purposes, so we’re gathering these topics in one place. This also allows students to find new peer-to-peer learning opportunities without having to poke around all the other forums.

To announce your program, or to invite others to work with you on it, here’s what to do:

1) Post a new topic in the Peer-to-Peer Programs forum. This will be the discussion thread for your program.

2) Post a single brief post in this thread that links the discussion thread of your program in the Peer-to-Peer Programs forum.

Please note that we’ll move or delete any future advertisement posts that are outside the Peer-to-Peer Programs forum, as well as any posts in this topic that are not brief announcements of new opportunities. In particular, this topic should not be used to discuss specific programs; those discussions should occur in topics in the Peer-to-Peer Programs forum.

Your post in this thread should have what you're sharing (class, session, tutoring, handout, math or coding game/other program) and a link to the thread in the Peer-to-Peer Programs forum, which should have more information (like where to find what you're sharing).
157 replies
jwelsh
Mar 15, 2021
cw357
Dec 11, 2023
k i C&P posting recs by mods
v_Enhance   0
Jun 12, 2020
The purpose of this post is to lay out a few suggestions about what kind of posts work well for the C&P forum. Except in a few cases these are mostly meant to be "suggestions based on historical trends" rather than firm hard rules; we may eventually replace this with an actual list of firm rules but that requires admin approval :) That said, if you post something in the "discouraged" category, you should not be totally surprised if it gets locked; they are discouraged exactly because past experience shows they tend to go badly.
-----------------------------
1. Program discussion: Allowed
If you have questions about specific camps or programs (e.g. which classes are good at X camp?), these questions fit well here. Many camps/programs have specific sub-forums too but we understand a lot of them are not active.
-----------------------------
2. Results discussion: Allowed
You can make threads about e.g. how you did on contests (including AMC), though on AMC day when there is a lot of discussion. Moderators and administrators may do a lot of thread-merging / forum-wrangling to keep things in one place.
-----------------------------
3. Reposting solutions or questions to past AMC/AIME/USAMO problems: Allowed
This forum contains a post for nearly every problem from AMC8, AMC10, AMC12, AIME, USAJMO, USAMO (and these links give you an index of all these posts). It is always permitted to post a full solution to any problem in its own thread (linked above), regardless of how old the problem is, and even if this solution is similar to one that has already been posted. We encourage this type of posting because it is helpful for the user to explain their solution in full to an audience, and for future users who want to see multiple approaches to a problem or even just the frequency distribution of common approaches. We do ask for some explanation; if you just post "the answer is (B); ez" then you are not adding anything useful.

You are also encouraged to post questions about a specific problem in the specific thread for that problem, or about previous user's solutions. It's almost always better to use the existing thread than to start a new one, to keep all the discussion in one place easily searchable for future visitors.
-----------------------------
4. Advice posts: Allowed, but read below first
You can use this forum to ask for advice about how to prepare for math competitions in general. But you should be aware that this question has been asked many many times. Before making a post, you are encouraged to look at the following:
[list]
[*] Stop looking for the right training: A generic post about advice that keeps getting stickied :)
[*] There is an enormous list of links on the Wiki of books / problems / etc for all levels.
[/list]
When you do post, we really encourage you to be as specific as possible in your question. Tell us about your background, what you've tried already, etc.

Actually, the absolute best way to get a helpful response is to take a few examples of problems that you tried to solve but couldn't, and explain what you tried on them / why you couldn't solve them. Here is a great example of a specific question.
-----------------------------
5. Publicity: use P2P forum instead
See https://artofproblemsolving.com/community/c5h2489297_peertopeer_programs_forum.
Some exceptions have been allowed in the past, but these require approval from administrators. (I am not totally sure what the criteria is. I am not an administrator.)
-----------------------------
6. Mock contests: use Mock Contests forum instead
Mock contests should be posted in the dedicated forum instead:
https://artofproblemsolving.com/community/c594864_aops_mock_contests
-----------------------------
7. AMC procedural questions: suggest to contact the AMC HQ instead
If you have a question like "how do I submit a change of venue form for the AIME" or "why is my name not on the qualifiers list even though I have a 300 index", you would be better off calling or emailing the AMC program to ask, they are the ones who can help you :)
-----------------------------
8. Discussion of random math problems: suggest to use MSM/HSM/HSO instead
If you are discussing a specific math problem that isn't from the AMC/AIME/USAMO, it's better to post these in Middle School Math, High School Math, High School Olympiads instead.
-----------------------------
9. Politics: suggest to use Round Table instead
There are important conversations to be had about things like gender diversity in math contests, etc., for sure. However, from experience we think that C&P is historically not a good place to have these conversations, as they go off the rails very quickly. We encourage you to use the Round Table instead, where it is much more clear that all posts need to be serious.
-----------------------------
10. MAA complaints: discouraged
We don't want to pretend that the MAA is perfect or that we agree with everything they do. However, we chose to discourage this sort of behavior because in practice most of the comments we see are not useful and some are frankly offensive.
[list] [*] If you just want to blow off steam, do it on your blog instead.
[*] When you have criticism, it should be reasoned, well-thought and constructive. What we mean by this is, for example, when the AOIME was announced, there was great outrage about potential cheating. Well, do you really think that this is something the organizers didn't think about too? Simply posting that "people will cheat and steal my USAMOO qualification, the MAA are idiots!" is not helpful as it is not bringing any new information to the table.
[*] Even if you do have reasoned, well-thought, constructive criticism, we think it is actually better to email it the MAA instead, rather than post it here. Experience shows that even polite, well-meaning suggestions posted in C&P are often derailed by less mature users who insist on complaining about everything.
[/list]
-----------------------------
11. Memes and joke posts: discouraged
It's fine to make jokes or lighthearted posts every so often. But it should be done with discretion. Ideally, jokes should be done within a longer post that has other content. For example, in my response to one user's question about olympiad combinatorics, I used a silly picture of Sogiita Gunha, but it was done within a context of a much longer post where it was meant to actually make a point.

On the other hand, there are many threads which consist largely of posts whose only content is an attached meme with the word "MAA" in it. When done in excess like this, the jokes reflect poorly on the community, so we explicitly discourage them.
-----------------------------
12. Questions that no one can answer: discouraged
Examples of this: "will MIT ask for AOIME scores?", "what will the AIME 2021 cutoffs be (asked in 2020)", etc. Basically, if you ask a question on this forum, it's better if the question is something that a user can plausibly answer :)
-----------------------------
13. Blind speculation: discouraged
Along these lines, if you do see a question that you don't have an answer to, we discourage "blindly guessing" as it leads to spreading of baseless rumors. For example, if you see some user posting "why are there fewer qualifiers than usual this year?", you should not reply "the MAA must have been worried about online cheating so they took fewer people!!". Was sich überhaupt sagen lässt, lässt sich klar sagen; und wovon man nicht reden kann, darüber muss man schweigen.
-----------------------------
14. Discussion of cheating: strongly discouraged
If you have evidence or reasonable suspicion of cheating, please report this to your Competition Manager or to the AMC HQ; these forums cannot help you.
Otherwise, please avoid public discussion of cheating. That is: no discussion of methods of cheating, no speculation about how cheating affects cutoffs, and so on --- it is not helpful to anyone, and it creates a sour atmosphere. A longer explanation is given in Seriously, please stop discussing how to cheat.
-----------------------------
15. Cutoff jokes: never allowed
Whenever the cutoffs for any major contest are released, it is very obvious when they are official. In the past, this has been achieved by the numbers being posted on the official AMC website (here) or through a post from the AMCDirector account.

You must never post fake cutoffs, even as a joke. You should also refrain from posting cutoffs that you've heard of via email, etc., because it is better to wait for the obvious official announcement. A longer explanation is given in A Treatise on Cutoff Trolling.
-----------------------------
16. Meanness: never allowed
Being mean is worse than being immature and unproductive. If another user does something which you think is inappropriate, use the Report button to bring the post to moderator attention, or if you really must reply, do so in a way that is tactful and constructive rather than inflammatory.
-----------------------------

Finally, we remind you all to sit back and enjoy the problems. :D

-----------------------------
(EDIT 2024-09-13: AoPS has asked to me to add the following item.)

Advertising paid program or service: never allowed

Per the AoPS Terms of Service (rule 5h), general advertisements are not allowed.

While we do allow advertisements of official contests (at the MAA and MATHCOUNTS level) and those run by college students with at least one successful year, any and all advertisements of a paid service or program is not allowed and will be deleted.
0 replies
v_Enhance
Jun 12, 2020
0 replies
k i Stop looking for the "right" training
v_Enhance   50
N Oct 16, 2017 by blawho12
Source: Contest advice
EDIT 2019-02-01: https://blog.evanchen.cc/2019/01/31/math-contest-platitudes-v3/ is the updated version of this.

EDIT 2021-06-09: see also https://web.evanchen.cc/faq-contest.html.

Original 2013 post
50 replies
v_Enhance
Feb 15, 2013
blawho12
Oct 16, 2017
AB=BA if A-nilpotent
KevinDB17   2
N an hour ago by loup blanc
Let A,B 2 complex n*n matrices such that AB+I=A+B+BA
If A is nilpotent prove that AB=BA
2 replies
KevinDB17
Mar 30, 2025
loup blanc
an hour ago
Integration Bee Kaizo
Calcul8er   58
N 2 hours ago by Blossom_tree_17
Hey integration fans. I decided to collate some of my favourite and most evil integrals I've written into one big integration bee problem set. I've been entering integration bees since 2017 and I've been really getting hands on with the writing side of things over the last couple of years. I hope you'll enjoy!
58 replies
+1 w
Calcul8er
Mar 2, 2025
Blossom_tree_17
2 hours ago
Putnam 2016 A1
Kent Merryfield   16
N 3 hours ago by sangsidhya
Find the smallest positive integer $j$ such that for every polynomial $p(x)$ with integer coefficients and for every integer $k,$ the integer
\[p^{(j)}(k)=\left. \frac{d^j}{dx^j}p(x) \right|_{x=k}\](the $j$-th derivative of $p(x)$ at $k$) is divisible by $2016.$
16 replies
Kent Merryfield
Dec 4, 2016
sangsidhya
3 hours ago
purple comet discussion
ConfidentKoala4   66
N Today at 3:43 AM by wuwang2002
when can we discuss purple comet
66 replies
ConfidentKoala4
May 2, 2025
wuwang2002
Today at 3:43 AM
Putnam 1954 B1
sqrtX   7
N Today at 3:42 AM by justaguy_69
Source: Putnam 1954
Show that the equation $x^2 -y^2 =a^3$ has always integral solutions for $x$ and $y$ whenever $a$ is a positive integer.
7 replies
sqrtX
Jul 17, 2022
justaguy_69
Today at 3:42 AM
9 ARML Location
deduck   36
N Today at 2:31 AM by idk12345678
UNR -> Nevada
St Anselm -> New Hampshire
PSU -> Pennsylvania
WCU -> North Carolina


Put your USERNAME in the list ONLY IF YOU WANT TO!!!! !!!!!

I'm going to UNR if anyone wants to meetup!!! :D

Current List:
Iowa
UNR
PSU
St Anselm
WCU
36 replies
deduck
Tuesday at 4:19 PM
idk12345678
Today at 2:31 AM
how prestigious is hsmc
ConfidentKoala4   3
N Today at 1:20 AM by ConfidentKoala4
been wonderin this for a while

how prestigious is it? ik its not as good as mathily (they rejected me :mad: ) but Idk how good it actually is
3 replies
ConfidentKoala4
Today at 12:46 AM
ConfidentKoala4
Today at 1:20 AM
9 Does Mental Health Actually Matter?
heheman   9
N Today at 12:47 AM by maxamc
Looking at the goals I once had, it was all just so silly and stupid

I didn't even reach my "Low" goal for AIME... so pathetic

Missed JMO by a huge margin, after missing by only 12.5 points last year

(BTW i didn't slack off one bit)

I guess the most important thing is just to keep my head up and keep going. I can't let failures stop me. Honestly I don't care about setting goals anymore. They only give me a lot of internal pressure to do well. I think the most important thing is to focus on what I do everyday, consistently, and pay attention to the beautiful things in life (like math).

I'm going to try getting more involved in real life. After coming back from COVID, I had trouble to make as many friends with non-math people. But I was reconnecting with some of my friends that I had prepandemic and I realized how precious those friendships really were.

Now the last thing to do is grind my last bit of nonexistent ego to dust and focus on the present, stop looking back

(Note: This doesn't mean I'm going to quit, I just mean I'm going to do math on my own and try to not feel any pressure to do well. Cause i feel like that pressure really beat me a lot.)

I love this community and am happy for everyone who qualified olympiad but at this point competition math just reminds me only of my failures. (Even if it's my own fault.) So I'm probably going to take a break for a while. Thanks everyone for being nice to me and stuff. Sorry if this sounds cringe (it will in a week)

9 replies
heheman
Mar 8, 2024
maxamc
Today at 12:47 AM
HCSSiM results
SurvivingInEnglish   60
N Today at 12:32 AM by Vivaandax
Anyone already got results for HCSSiM? Are there any point in sending additional work if I applied on March 19?
60 replies
SurvivingInEnglish
Apr 5, 2024
Vivaandax
Today at 12:32 AM
Rational sequences
tenniskidperson3   57
N Yesterday at 10:25 PM by OronSH
Source: 2009 USAMO problem 6
Let $s_1, s_2, s_3, \dots$ be an infinite, nonconstant sequence of rational numbers, meaning it is not the case that $s_1 = s_2 = s_3 = \dots.$ Suppose that $t_1, t_2, t_3, \dots$ is also an infinite, nonconstant sequence of rational numbers with the property that $(s_i - s_j)(t_i - t_j)$ is an integer for all $i$ and $j$. Prove that there exists a rational number $r$ such that $(s_i - s_j)r$ and $(t_i - t_j)/r$ are integers for all $i$ and $j$.
57 replies
tenniskidperson3
Apr 30, 2009
OronSH
Yesterday at 10:25 PM
1:1 Physics Tutors
DinoDragon186   3
N Yesterday at 7:26 PM by talhee
I am looking for 1:1 physics tutor.
I am a beginner in physics and am in 9th grade.
I want to make it to IPhO in the coming years.
3 replies
DinoDragon186
Dec 10, 2024
talhee
Yesterday at 7:26 PM
Looking for Physics or USAPhO Tutor
physicsplease   4
N Yesterday at 7:20 PM by talhee
Hii I am looking for a USAPhO tutor for next year's season. I think I have tried literally everything possible to improve but I feel like I just hit a massive roadblock right now.

It would be ideal if I can find someone who have a lot of experience with physics olympiads. My goal is medal/gold in usapho next year, and I am very determined & willing to put in a lot of hours, especially more so in the summer. Please recommend anyone or dm in aops, thank you.

Have qualified usapho before (last year), took both physics c and sufficient higher math.
4 replies
physicsplease
Apr 11, 2025
talhee
Yesterday at 7:20 PM
MathILy 2025 Decisions Thread
mysterynotfound   40
N Yesterday at 4:11 PM by bjump
Discuss your decisions here!
also share any relevant details about your decisions if you want
40 replies
mysterynotfound
Apr 21, 2025
bjump
Yesterday at 4:11 PM
Mathcounts state
happymoose666   39
N Yesterday at 1:54 PM by Inaaya
Hi everyone,
I just have a question. I live in PA and I sadly didn't make it to nationals this year. Is PA a competitive state? I'm new into mathcounts and not sure
39 replies
happymoose666
Mar 24, 2025
Inaaya
Yesterday at 1:54 PM
MVT question
mqoi_KOLA   10
N Apr 15, 2025 by mqoi_KOLA
Let \( f \) be a function which is continuous on \( [0,1] \) and differentiable on \( (0,1) \), with \( f(0) = f(1) = 0 \). Assume that there is some \( c \in (0,1) \) such that \( f(c) = 1 \). Prove that there exists some \( x_0 \in (0,1) \) such that \( |f'(x_0)| > 2 \).
10 replies
mqoi_KOLA
Apr 10, 2025
mqoi_KOLA
Apr 15, 2025
MVT question
G H J
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mqoi_KOLA
85 posts
#1
Y by
Let \( f \) be a function which is continuous on \( [0,1] \) and differentiable on \( (0,1) \), with \( f(0) = f(1) = 0 \). Assume that there is some \( c \in (0,1) \) such that \( f(c) = 1 \). Prove that there exists some \( x_0 \in (0,1) \) such that \( |f'(x_0)| > 2 \).
This post has been edited 3 times. Last edited by mqoi_KOLA, Apr 10, 2025, 9:51 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KAME06
158 posts
#2 • 1 Y
Y by mqoi_KOLA
Case 1: $c > 0.5$
Then, using Mean Value Theorem, there exist an $x_0$ such that $f'(x_0)=\frac{f(c)-f(0)}{c-0}=\frac{1-0}{c}=\frac{1}{c}>2 \Rightarrow |f'(x_0)|>2$.
Case 2: $c < 0.5$
That implies that $c-1 > -0.5$ then using Mean Value Theorem, there exist an $x_0$ such that $f'(x_0)=\frac{f(c)-f(1)}{c-1}=\frac{1-0}{c-1}=\frac{1}{c-1}<-2 \Rightarrow |f'(x_0)|>2$
Case 3: $c=0.5$
Here idk for \( |f'(x_0)| > 2 \)
This post has been edited 3 times. Last edited by KAME06, May 3, 2025, 3:14 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mqoi_KOLA
85 posts
#3 • 1 Y
Y by KAME06
u left the case which i wanted the proof for.. :noo: :wallbash_red:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ddot1
24732 posts
#4 • 2 Y
Y by mqoi_KOLA, KAME06
To handle the $c=1/2$ case, suppose $f(1/2)=1$ and assume $|f'(x)|\le 2$ on the whole interval $(0,1)$. Then by the mean value theorem, there is some $x_0$ such that $$\frac{f(1/2)-f(0)}{1/2-0}=f'(x_0),$$so $f'(x_0)=2$. That by itself isn't a contradiction, but we can do something similar to get a contradiction. The intuitive idea is that since we're right on the "edge" of a contradiction, we have no room to move the graph of $f$. If $|f'|\le 2$ and $f(1/2)=1$, that forces $f(x)=2x$ on the interval $[0,1/2]$. Moving the graph up or down at any point makes the slope larger than $2$ somewhere. Similarly, $f(x)=2-2x$ on the interval $[1/2,1]$.

We first prove that $f(x)=2x$ for every $x\in [0,1/2]$. On any interval $[0,a]$ with $a\le 1/2$, we have $$\frac{f(a)-f(0)}{a-0}=f'(x_a)$$for some $x_a$, depending on $a$. Since we're assuming $f'$ is always bounded by $2$, this means that $\dfrac{f(a)}{a}\le 2,$ so $f(a)\le 2a$ for all $a\in[0,1/2]$.

This inequality can never be strict, either. If we had $f(a)<2a$, then we could use the mean value theorem on the interval $[a,1/2]$ to get \begin{align*}\frac{f(1/2)-f(a)}{1/2-a}&=f'(x_a)\\
\frac{1-f(a)}{1/2-a}&=f'(x_a).
\end{align*}But the left side is larger than $2$, and the right side is at most $2$, a contradiction.

The same reasoning forces $f(x)=2-2x$ on the interval $[1/2,1]$, so $$f(x)=\begin{cases} 2x,\, &0\le x\le 1/2\\ 2-2x, &1/2<x\le 1.\end{cases}$$However, this function is not differentiable at $1/2$, so we are done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Alphaamss
247 posts
#5
Y by
Proof from MSE https://math.stackexchange.com/questions/1752763/suppose-f0-f1-0-and-fx-0-1-show-that-there-is-rho-with-lve?noredirect=1
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mqoi_KOLA
85 posts
#6
Y by
as a novice, this qns was good . thanks @alphaamss and @ddot1
This post has been edited 1 time. Last edited by mqoi_KOLA, Apr 11, 2025, 4:06 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MS_asdfgzxcvb
70 posts
#7 • 1 Y
Y by mqoi_KOLA
\(c=\frac 12\):
\(\emph{Proof.}\) Assume towards a contradiction that \(\forall 0<\xi<1:\big|f'(\xi)\big|\le 2\).
LMVT on \(0<x<\frac 12\) and \(\frac 12\):
\[\usepackage{mathtools}
\tfrac {1-f(x)}{\frac 12-x}\le 2\xRightarrow{\hspace{40pt}}\left(\forall 0<x<\tfrac 12\right):f(x)\ \ge\ 2x\tag{1}\]LMVT on \(\frac 12\) and \(\frac 12<x<1\):
\[\usepackage{mathtools}
\tfrac {f(x)-1}{x-\frac 12}\ge -2\xRightarrow{\hspace{40pt}}\left(\forall \tfrac 12<x< 1\right):f(x)\ \ge\ 2-2x\tag{2}\]Differentiability at \(x=\frac 12\) implies \(f\equiv\begin{cases} 2x &0\le x\le 1/2\\ 2-2x &1/2<x\le 1\end{cases}\) is not possible.
Thus, using \((1)\) and \((2)\), reflecting about the line \(x=\frac 12\) if necessary, we may assume \(\exists 0<\alpha<\frac 12, \exists\eta>0:f(\alpha)=2\alpha+\eta\).
LMVT on \(0<x<\alpha\) and \(\alpha\):\[\usepackage{mathtools}
\tfrac {2\alpha+\eta-f(x)}{\alpha-x}\le 2\xRightarrow{\hspace{40pt}}\left(\forall 0<x<\alpha\right):f(x)\ \ge\ 2x+\eta\tag{3}\]\(\epsilon\big/\delta\) continuity at \(x=0\):\[(\forall \epsilon>0)(\exists\delta>0):0<x<\delta\xRightarrow{\hspace{40pt}}\big|f(x)\big|<\epsilon\tag{4} \]\((4)\) contradicts \((3)\) for \(0<\epsilon<\eta\).\(\usepackage{amsthm}
\qed\)
This post has been edited 1 time. Last edited by MS_asdfgzxcvb, Apr 11, 2025, 5:16 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mqoi_KOLA
85 posts
#8
Y by
thanks @MS_asdfgzxcvb :)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Rohit-2006
240 posts
#9 • 1 Y
Y by mqoi_KOLA
Easy peasy....vai toone mujhe nehi bola.....ye le soln
$f$ is differentiable on $(0,1)$. For $c>0.5$ and $c<0.5$ you can hopefully do!!
For $c=0.5$ put the value of $c$ in the two equations,
$$f(x)=\begin{cases} 2x,\, &0\le x\le 1/2\\ 2-2x, &1/2<x\le 1.\end{cases}$$So clearly visible that not differentiable on $c=0.5$....
$LHD=2$ and $RHD=-2$
This post has been edited 1 time. Last edited by Rohit-2006, Apr 15, 2025, 4:27 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mqoi_KOLA
85 posts
#11
Y by
Rohit-2006 wrote:
Easy peasy....vai toone mujhe nehi bola.....ye le soln
$f$ is differentiable on $(0,1)$. For $c>0.5$ and $c<0.5$ you can hopefully do!!
For $c=0.5$ put the value of $c$ in the two equations,
$$f(x)=\begin{cases} 2x,\, &0\le x\le 1/2\\ 2-2x, &1/2<x\le 1.\end{cases}$$So clearly visible that not differentiable on $c=0.5$....
$LHD=2$ and $RHD=-2$

orz rohit ka question kal wale UGb mock mein aya tha (u solved that romanain grade 11 problem orz)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mqoi_KOLA
85 posts
#12
Y by
Rohit-2006 wrote:
Easy peasy....vai toone mujhe nehi bola.....ye le soln
$f$ is differentiable on $(0,1)$. For $c>0.5$ and $c<0.5$ you can hopefully do!!
For $c=0.5$ put the value of $c$ in the two equations,
$$f(x)=\begin{cases} 2x,\, &0\le x\le 1/2\\ 2-2x, &1/2<x\le 1.\end{cases}$$So clearly visible that not differentiable on $c=0.5$....
$LHD=2$ and $RHD=-2$

bro u only told to forget you :( :noo:
Z K Y
N Quick Reply
G
H
=
a