Isl 2004 a3

by Wolstenholme, Aug 7, 2014, 5:32 AM

Does there exist a function $s\colon \mathbb{Q} \rightarrow \{-1,1\}$ such that if $x$ and $y$ are distinct rational numbers satisfying ${xy=1}$ or ${x+y\in \{0,1\}}$, then ${s(x)s(y)=-1}$? Justify your answer.

Solution:

Every positive rational number has a unique continued fraction of the form $ a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots\frac{1}{a_{m - 1} + \frac{1}{a_m}}}}} $ for some $ m \in \mathbb{N} $ where $ a_i \in \mathbb{N} $ for all $ i $. From now on this will be denoted as $ [a_0; a_1, a_2, \dots, a_m] $.

For every $ a \in \mathbb{Q}^{+} $, let $ s(a) = (-1)^m $. Then let $ s(0) = -1 $ and for all $ b \in \mathbb{Q} \setminus \{0\} $ let $ s(-b) = -s(b) $. I claim that this $ s $ satisfies the desired properties. To prove this, consider two rational numbers $ x < y $.

$ 1) $ If $ x + y = 0 $ then by definition $ s(x)s(y) = -1 $ as desired.

$ 2) $ If $ x + y = 1 $ and $ x = 0 $ then by definition $ s(x)s(y) = -1 $ as desired since $ s(1) = 1 $.

$ 3) $ If $ x + y = 1 $ and $ x < 0 $ then to prove that $ s(x)s(y) = -1 $ it suffices to show that $ s(-x) = s(y) $. Let $ -x = [a_0; a_1, a_2, \dots, a_m] $. Then $ y = [a_0 + 1; a_1, a_2, \dots, a_m] $ and so $ s(-x) = s(y) = (-1)^m $ as desired.

$ 4) $ If $ x + y = 1 $ and $ x > 0 $ we can let $ y = [0; 1, a_2, \dots, a_m] $ so that $ x = [0; a_2 + 1, a_3, \dots, a_m] $ so $ s(y) = (-1)^m $ and $ s(x) = (-1)^{m - 1} $ which implies that $ s(x)s(y) = -1 $ as desired.

$ 5) $ If $ xy = 1 $, we can assume WLOG that $ 0 < x < 1 $. Then letting $ x = [0; a_1, a_2, \dots, a_m] $ we have that $ y = [a_1; a_2, a_3, \dots, a_m] $ so $ s(x) = (-1)^m $ and $ s(y) = (-1)^{m - 1} $ which implies that $ s(x)s(y) = -1 $ as desired.

Comment

J
U VIEW ATTACHMENTS T PREVIEW J CLOSE PREVIEW rREFRESH
J

0 Comments

Archives
+ June 2016
+ April 2016
+ March 2016
+ July 2015
+ February 2015
+ June 2014
Shouts
Submit
  • glad to have found a fellow chipotle lover <3

    by nukelauncher, Aug 13, 2020, 6:40 AM

  • the random chinese tst problem is the only thing I read, but I'll assume your blog is nice and give you a shout even though you probably never use aops anymoer

    by fukano_2, Jun 14, 2020, 6:24 AM

  • wolstenholme - op

    by AopsUser101, Jan 29, 2020, 8:27 PM

  • this blog is so hot

    by mathleticguyyy, Jun 5, 2019, 8:26 PM

  • Hi. Nice Blog!

    by User360702, Jan 10, 2019, 6:03 PM

  • helloooooo

    by songssari, Jun 12, 2016, 8:21 AM

  • shouts make blogs happier

    by briantix, Mar 18, 2016, 9:57 PM

  • You were just featured on AoPS's facebook page.

    by mishka1980, Sep 12, 2015, 10:33 PM

  • This is late, but where is the ARML results post?

    by donot, Aug 31, 2015, 11:07 PM

  • "I am Sam"
    "Sam I am"

    by mathwizard888, Aug 12, 2015, 9:13 PM

  • HW$\textcolor{white}{}$

    by Eugenis, Apr 20, 2015, 10:10 PM

  • Uh-oh ARML practice is Thursday... I should start the homework. :P

    by nosaj, Apr 20, 2015, 12:34 AM

  • Yes I am Sam, and Chebyshev polynomials aren't trivial, although they do make some problems trivial :P

    by Wolstenholme, Apr 15, 2015, 10:00 PM

  • How are Chebyshev Polynomials trivial? :P

    by nosaj, Apr 13, 2015, 4:10 AM

  • Are you Sam?

    by Eugenis, Apr 4, 2015, 2:05 AM

  • @Brian: yes, yes I did #whoneedsalgskillz?

    @gauss1181; hey!

    by Wolstenholme, Mar 1, 2015, 11:25 PM

  • hello!!! :D

    by gauss1181, Nov 27, 2014, 12:19 AM

  • Hi Wolstenholme did you actually use calc on that tstst problem :o

    by briantix, Aug 2, 2014, 12:25 AM

18 shouts
Contributors
Tags
About Owner
  • Posts: 543
  • Joined: Mar 3, 2013
Blog Stats
  • Blog created: Apr 3, 2013
  • Total entries: 112
  • Total visits: 34968
  • Total comments: 167
Search Blog
a