Day two of that Putnam

by Wolstenholme, Aug 8, 2015, 7:35 AM

$B.1.$ Let $a_j$, $b_j$, $c_j$ be integers for $1 \le j \le N$. Assume for each $j$, at least one of $a_j$, $b_j$, $c_j$ is odd. Show that there exists integers $r, s, t$ such that $ra_j+sb_j+tc_j$ is odd for at least $\tfrac{4N}{7}$ values of $j$, $1 \le j \le N$.

solution

$B.2.$ Prove that the expression \[ \dfrac {\text {gcd}(m, n)}{n} \dbinom {n}{m} \] is an integer for all pairs of integers $ n \ge m \ge 1 $.

solution

$B.4.$ Let $f(x)$ be a continuous function such that $f(2x^2-1)=2xf(x)$ for all $x$. Show that $f(x)=0$ for $-1\le x \le 1$.

solution

$B.5.$ Let $S_0$ be a finite set of positive integers. We define finite sets $S_1, S_2, \cdots$ of positive integers as follows: the integer $a$ in $S_{n+1}$ if and only if exactly one of $a-1$ or $a$ is in $S_n$. Show that there exist infinitely many integers $N$ for which $S_N = S_0 \cup \{ N + a: a \in S_0 \}$.

solution

$B.6.$ Let $B$ be a set of more than $\tfrac{2^{n+1}}{n}$ distinct points with coordinates of the form $(\pm 1, \pm 1, \cdots, \pm 1)$ in $n$-dimensional space with $n \ge 3$. Show that there are three distinct points in $B$ which are the vertices of an equilateral triangle.
solution

Well I'd say I got at least a 101 on this Putnam!!!! The overall first place score in 2000 was 96....darn wish I could take it haha :)

Comment

1 Comment

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
lol "p-chipotle points"

by champion999, Aug 9, 2015, 12:35 AM

Archives
+ June 2016
+ April 2016
+ March 2016
+ July 2015
+ February 2015
+ June 2014
Shouts
Submit
  • glad to have found a fellow chipotle lover <3

    by nukelauncher, Aug 13, 2020, 6:40 AM

  • the random chinese tst problem is the only thing I read, but I'll assume your blog is nice and give you a shout even though you probably never use aops anymoer

    by fukano_2, Jun 14, 2020, 6:24 AM

  • wolstenholme - op

    by AopsUser101, Jan 29, 2020, 8:27 PM

  • this blog is so hot

    by mathleticguyyy, Jun 5, 2019, 8:26 PM

  • Hi. Nice Blog!

    by User360702, Jan 10, 2019, 6:03 PM

  • helloooooo

    by songssari, Jun 12, 2016, 8:21 AM

  • shouts make blogs happier

    by briantix, Mar 18, 2016, 9:57 PM

  • You were just featured on AoPS's facebook page.

    by mishka1980, Sep 12, 2015, 10:33 PM

  • This is late, but where is the ARML results post?

    by donot, Aug 31, 2015, 11:07 PM

  • "I am Sam"
    "Sam I am"

    by mathwizard888, Aug 12, 2015, 9:13 PM

  • HW$\textcolor{white}{}$

    by Eugenis, Apr 20, 2015, 10:10 PM

  • Uh-oh ARML practice is Thursday... I should start the homework. :P

    by nosaj, Apr 20, 2015, 12:34 AM

  • Yes I am Sam, and Chebyshev polynomials aren't trivial, although they do make some problems trivial :P

    by Wolstenholme, Apr 15, 2015, 10:00 PM

  • How are Chebyshev Polynomials trivial? :P

    by nosaj, Apr 13, 2015, 4:10 AM

  • Are you Sam?

    by Eugenis, Apr 4, 2015, 2:05 AM

  • @Brian: yes, yes I did #whoneedsalgskillz?

    @gauss1181; hey!

    by Wolstenholme, Mar 1, 2015, 11:25 PM

  • hello!!! :D

    by gauss1181, Nov 27, 2014, 12:19 AM

  • Hi Wolstenholme did you actually use calc on that tstst problem :o

    by briantix, Aug 2, 2014, 12:25 AM

18 shouts
Contributors
Tags
About Owner
  • Posts: 543
  • Joined: Mar 3, 2013
Blog Stats
  • Blog created: Apr 3, 2013
  • Total entries: 112
  • Total visits: 35109
  • Total comments: 167
Search Blog
a