Plan ahead for the next school year. Schedule your class today!

G
Topic
First Poster
Last Poster
k a July Highlights and 2025 AoPS Online Class Information
jwelsh   0
Jul 1, 2025
We are halfway through summer, so be sure to carve out some time to keep your skills sharp and explore challenging topics at AoPS Online and our AoPS Academies (including the Virtual Campus)!

[list][*]Over 60 summer classes are starting at the Virtual Campus on July 7th - check out the math and language arts options for middle through high school levels.
[*]At AoPS Online, we have accelerated sections where you can complete a course in half the time by meeting twice/week instead of once/week, starting on July 8th:
[list][*]MATHCOUNTS/AMC 8 Basics
[*]MATHCOUNTS/AMC 8 Advanced
[*]AMC Problem Series[/list]
[*]Plus, AoPS Online has a special seminar July 14 - 17 that is outside the standard fare: Paradoxes and Infinity
[*]We are expanding our in-person AoPS Academy locations - are you looking for a strong community of problem solvers, exemplary instruction, and math and language arts options? Look to see if we have a location near you and enroll in summer camps or academic year classes today! New locations include campuses in California, Georgia, New York, Illinois, and Oregon and more coming soon![/list]

MOP (Math Olympiad Summer Program) just ended and the IMO (International Mathematical Olympiad) is right around the corner! This year’s IMO will be held in Australia, July 10th - 20th. Congratulations to all the MOP students for reaching this incredible level and best of luck to all selected to represent their countries at this year’s IMO! Did you know that, in the last 10 years, 59 USA International Math Olympiad team members have medaled and have taken over 360 AoPS Online courses. Take advantage of our Worldwide Online Olympiad Training (WOOT) courses
and train with the best! Please note that early bird pricing ends August 19th!
Are you tired of the heat and thinking about Fall? You can plan your Fall schedule now with classes at either AoPS Online, AoPS Academy Virtual Campus, or one of our AoPS Academies around the US.

Our full course list for upcoming classes is below:
All classes start 7:30pm ET/4:30pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Wednesday, Jul 16 - Oct 29
Sunday, Aug 17 - Dec 14
Tuesday, Aug 26 - Dec 16
Friday, Sep 5 - Jan 16
Monday, Sep 8 - Jan 12
Tuesday, Sep 16 - Jan 20 (4:30 - 5:45 pm ET/1:30 - 2:45 pm PT)
Sunday, Sep 21 - Jan 25
Thursday, Sep 25 - Jan 29
Wednesday, Oct 22 - Feb 25
Tuesday, Nov 4 - Mar 10
Friday, Dec 12 - Apr 10

Prealgebra 2 Self-Paced

Prealgebra 2
Friday, Jul 25 - Nov 21
Sunday, Aug 17 - Dec 14
Tuesday, Sep 9 - Jan 13
Thursday, Sep 25 - Jan 29
Sunday, Oct 19 - Feb 22
Monday, Oct 27 - Mar 2
Wednesday, Nov 12 - Mar 18

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Tuesday, Jul 15 - Oct 28
Sunday, Aug 17 - Dec 14
Wednesday, Aug 27 - Dec 17
Friday, Sep 5 - Jan 16
Thursday, Sep 11 - Jan 15
Sunday, Sep 28 - Feb 1
Monday, Oct 6 - Feb 9
Tuesday, Oct 21 - Feb 24
Sunday, Nov 9 - Mar 15
Friday, Dec 5 - Apr 3

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Jul 2 - Sep 17
Sunday, Jul 27 - Oct 19
Monday, Aug 11 - Nov 3
Wednesday, Sep 3 - Nov 19
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Friday, Oct 3 - Jan 16
Sunday, Oct 19 - Jan 25
Tuesday, Nov 4 - Feb 10
Sunday, Dec 7 - Mar 8

Introduction to Number Theory
Tuesday, Jul 15 - Sep 30
Wednesday, Aug 13 - Oct 29
Friday, Sep 12 - Dec 12
Sunday, Oct 26 - Feb 1
Monday, Dec 1 - Mar 2

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Friday, Jul 18 - Nov 14
Thursday, Aug 7 - Nov 20
Monday, Aug 18 - Dec 15
Sunday, Sep 7 - Jan 11
Thursday, Sep 11 - Jan 15
Wednesday, Sep 24 - Jan 28
Sunday, Oct 26 - Mar 1
Tuesday, Nov 4 - Mar 10
Monday, Dec 1 - Mar 30

Introduction to Geometry
Monday, Jul 14 - Jan 19
Wednesday, Aug 13 - Feb 11
Tuesday, Aug 26 - Feb 24
Sunday, Sep 7 - Mar 8
Thursday, Sep 11 - Mar 12
Wednesday, Sep 24 - Mar 25
Sunday, Oct 26 - Apr 26
Monday, Nov 3 - May 4
Friday, Dec 5 - May 29

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)
Sat & Sun, Sep 13 - Sep 14 (1:00 - 4:00 PM PT/4:00 - 7:00 PM ET)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
Friday, Aug 8 - Feb 20
Tuesday, Aug 26 - Feb 24
Sunday, Sep 28 - Mar 29
Wednesday, Oct 8 - Mar 8
Sunday, Nov 16 - May 17
Thursday, Dec 11 - Jun 4

Intermediate Counting & Probability
Sunday, Sep 28 - Feb 15
Tuesday, Nov 4 - Mar 24

Intermediate Number Theory
Wednesday, Sep 24 - Dec 17

Precalculus
Wednesday, Aug 6 - Jan 21
Tuesday, Sep 9 - Feb 24
Sunday, Sep 21 - Mar 8
Monday, Oct 20 - Apr 6
Sunday, Dec 14 - May 31

Advanced: Grades 9-12

Calculus
Sunday, Sep 7 - Mar 15
Wednesday, Sep 24 - Apr 1
Friday, Nov 14 - May 22

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Wednesday, Sep 3 - Nov 19
Tuesday, Sep 16 - Dec 9
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Oct 6 - Jan 12
Thursday, Oct 16 - Jan 22
Tues, Thurs & Sun, Dec 9 - Jan 18 (meets three times a week!)

MATHCOUNTS/AMC 8 Advanced
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Tuesday, Aug 26 - Nov 11
Thursday, Sep 4 - Nov 20
Friday, Sep 12 - Dec 12
Monday, Sep 15 - Dec 8
Sunday, Oct 5 - Jan 11
Tues, Thurs & Sun, Dec 2 - Jan 11 (meets three times a week!)
Mon, Wed & Fri, Dec 8 - Jan 16 (meets three times a week!)

AMC 10 Problem Series
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 10 - Nov 2
Thursday, Aug 14 - Oct 30
Tuesday, Aug 19 - Nov 4
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Mon, Wed & Fri, Oct 6 - Nov 3 (meets three times a week!)
Tue, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 10 Final Fives
Friday, Aug 15 - Sep 12
Sunday, Sep 7 - Sep 28
Tuesday, Sep 9 - Sep 30
Monday, Sep 22 - Oct 13
Sunday, Sep 28 - Oct 19 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, Oct 8 - Oct 29
Thursday, Oct 9 - Oct 30

AMC 12 Problem Series
Wednesday, Aug 6 - Oct 22
Sunday, Aug 10 - Nov 2
Monday, Aug 18 - Nov 10
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Tues, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 12 Final Fives
Thursday, Sep 4 - Sep 25
Sunday, Sep 28 - Oct 19
Tuesday, Oct 7 - Oct 28

AIME Problem Series A
Thursday, Oct 23 - Jan 29

AIME Problem Series B
Tuesday, Sep 2 - Nov 18

F=ma Problem Series
Tuesday, Sep 16 - Dec 9
Friday, Oct 17 - Jan 30

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT


Programming

Introduction to Programming with Python
Thursday, Aug 14 - Oct 30
Sunday, Sep 7 - Nov 23
Tuesday, Dec 2 - Mar 3

Intermediate Programming with Python
Friday, Oct 3 - Jan 16

USACO Bronze Problem Series
Wednesday, Sep 3 - Dec 3
Thursday, Oct 30 - Feb 5
Tuesday, Dec 2 - Mar 3

Physics

Introduction to Physics
Tuesday, Sep 2 - Nov 18
Sunday, Oct 5 - Jan 11
Wednesday, Dec 10 - Mar 11

Physics 1: Mechanics
Sunday, Sep 21 - Mar 22
Sunday, Oct 26 - Apr 26
0 replies
jwelsh
Jul 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Eccentricity Sleuthing
Mathzeus1024   0
16 minutes ago
A nice problem involving conics.
0 replies
Mathzeus1024
16 minutes ago
0 replies
in n^2-9 has 6 positive divisors than GCD (n-3, n+3)=1
parmenides51   8
N 17 minutes ago by Just1
Source: Greece JBMO TST 2016 p3
Positive integer $n$ is such that number $n^2-9$ has exactly $6$ positive divisors. Prove that GCD $(n-3, n+3)=1$
8 replies
parmenides51
Apr 29, 2019
Just1
17 minutes ago
Find the limit as n approaches infinity of the nth root of n factorial.
thienphu_aops   3
N 19 minutes ago by Tintarn
Find the limit as n approaches infinity of the nth root of n factorial.
3 replies
thienphu_aops
Jun 16, 2025
Tintarn
19 minutes ago
inequality
SunnyEvan   6
N 34 minutes ago by SunnyEvan
Source: Own
Let $ x \in (arccos(\frac{1}{\sqrt[4]{2}}), arcsin(\frac{1}{\sqrt[4]{2}})) $, try to prove or disprove that :
$$ \frac{(\sqrt2 cosx -1)^2}{cos2x+tan\frac{\pi}{8}}-\frac{(\sqrt2 sinx -1)^2}{cos2x-tan\frac{\pi}{8}} \geq \frac{1}{2}(\frac{tanx-1}{tanx+1})^2 $$
6 replies
SunnyEvan
Jul 13, 2025
SunnyEvan
34 minutes ago
IMO 2014 Problem 1
Amir Hossein   137
N 37 minutes ago by wangyanliluke
Let $a_0 < a_1 < a_2 < \dots$ be an infinite sequence of positive integers. Prove that there exists a unique integer $n\geq 1$ such that
\[a_n < \frac{a_0+a_1+a_2+\cdots+a_n}{n} \leq a_{n+1}.\]
Proposed by Gerhard Wöginger, Austria.
137 replies
Amir Hossein
Jul 8, 2014
wangyanliluke
37 minutes ago
bomboclat NT problem
LostDreams   3
N 38 minutes ago by ohiorizzler1434
How many perfect square residues are there mod $2^n$?
3 replies
LostDreams
Yesterday at 8:27 PM
ohiorizzler1434
38 minutes ago
Sunny lines
sarjinius   29
N 40 minutes ago by KitKat_Kitty1243
Source: 2025 IMO P1
A line in the plane is called $sunny$ if it is not parallel to any of the $x$axis, the $y$axis, or the line $x+y=0$.

Let $n\ge3$ be a given integer. Determine all nonnegative integers $k$ such that there exist $n$ distinct lines in the plane satisfying both of the following:
[list]
[*] for all positive integers $a$ and $b$ with $a+b\le n+1$, the point $(a,b)$ lies on at least one of the lines; and
[*] exactly $k$ of the $n$ lines are sunny.
[/list]
29 replies
+2 w
sarjinius
Today at 3:35 AM
KitKat_Kitty1243
40 minutes ago
2017 N4 type Problem
zqy648   1
N an hour ago by EthanWYX2009
Source: 2023 New Year 谜之竞赛-3
Let prime number $p>3$ and $t$ be a positive integer. Show that
\[\binom{p^{t+1}}{p^t}\equiv\binom{p^t}{p^{t-1}}\pmod {p^{3t+2}}.\]
1 reply
zqy648
Yesterday at 9:57 AM
EthanWYX2009
an hour ago
double sequence
LostDreams   1
N an hour ago by AshAuktober
Source: 2023 Mediterranean Mathematics Competition, P4 of 4
Let $d(n)$ denote the number of divisors of $n$. A sequence $a_1, a_2, ...$ of positive integers is called double-sequence if

$\bullet$ $a_k \mid a_{k+1} $

$\bullet$ $d(a_{k+1}) = 2d(a_k)$

for all $k = 1, 2, ...$ A positive number $n$ is called good if for every double-sequence with $a_1=n$ we have that $a_{k+1}/a_k$ is a prime power for $k=1, 2, ...$

Prove that a number $n$ is good if and only if $n$ appears in a double-sequence with $a_1 = 1$.
1 reply
LostDreams
an hour ago
AshAuktober
an hour ago
AOPS MO Introduce
MathMaxGreat   91
N an hour ago by Not__Infinity
$AOPS MO$

Problems: post it as a private message to me or @jerryZYang, please post it in $LATEX$ and have answers

6 Problems for two rounds, easier than $IMO$

If you want to do the problems or be interested, reply ’+1’
Want to post a problem reply’+2’ and message me
Want to be in the problem selection committee, reply’+3’
91 replies
MathMaxGreat
Jul 12, 2025
Not__Infinity
an hour ago
Something Proposer Said is Easy
EthanWYX2009   2
N an hour ago by RunboLi
Source: 2023 September 谜之竞赛-7
For a positive integer \( n \), let \( P_n \) denote the product of all prime numbers not exceeding \( n \).

Prove that there exists a constant \( c > 0 \) such that for any sufficiently large integer \( n \), if all integers not exceeding \( P_n \) and coprime with \( P_n \) are arranged in a sequence, then there exist two adjacent numbers in this sequence whose difference is at least \( c \cdot \frac{n \cdot \ln n}{(\ln \ln n)^2} \).

Furthermore, consider whether this bound can be strengthened to \( c \cdot \frac{n \cdot \ln n \cdot \ln \ln \ln n}{(\ln \ln n)^2} \).

Created by Mucong Sun, Tianjin Experimental Binhai School
2 replies
EthanWYX2009
Jul 12, 2025
RunboLi
an hour ago
IMO MOHS rating predictions
ohiorizzler1434   21
N an hour ago by PokemonMaster2012
Everybody, with the IMO about to happen soon, what are your predictions for the MOHS ratings of the problems? I predict 10 20 40 15 25 45.
21 replies
ohiorizzler1434
Yesterday at 4:48 AM
PokemonMaster2012
an hour ago
product of the digits
Arne   14
N 2 hours ago by Just1
Source: AMO 2006
For any positive integer $n$, define $a_n$ to be the product of the digits of $n$.

(a) Prove that $n \geq a(n)$ for all positive integers $n$.
(b) Find all $n$ for which $n^2-17n+56 = a(n)$.
14 replies
Arne
May 6, 2006
Just1
2 hours ago
Putnam 2018 A1
62861   32
N Yesterday at 8:40 PM by mudkip42
Find all ordered pairs $(a, b)$ of positive integers for which
\[\frac{1}{a} + \frac{1}{b} = \frac{3}{2018}.\]
32 replies
62861
Dec 2, 2018
mudkip42
Yesterday at 8:40 PM
uniformly continuous of multivariable function
keroro902   1
N May 14, 2025 by Mathzeus1024
How can I determine which of the following functions are uniformly continuous on the given domain A?

$f \left( x, y \right) = \frac{x^3 + y^2}{x^2 + y}$ , $A = \left\{ \left( x, y
\right) \in \mathbb m{R}^2 \left|  \right.  \left| y \right| \leq \frac{x^2}{2}
%Error. "nocomma" is a bad command.
, x^2 + y^2 < 1 \right\}$

$g \left( x, y \right) = \frac{y^2 + 4 x^2}{y^2 - 4 x^2 - 1}$, $A = \left\{
\left( x, y \right) \in \mathbb m{R}^2 \left| 0 \leq x^2 - y^2 \leqslant 1
\right\} \right.$
1 reply
keroro902
Nov 2, 2012
Mathzeus1024
May 14, 2025
uniformly continuous of multivariable function
G H J
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
keroro902
9 posts
#1 • 2 Y
Y by Adventure10, Mango247
How can I determine which of the following functions are uniformly continuous on the given domain A?

$f \left( x, y \right) = \frac{x^3 + y^2}{x^2 + y}$ , $A = \left\{ \left( x, y
\right) \in \mathbb m{R}^2 \left|  \right.  \left| y \right| \leq \frac{x^2}{2}
%Error. "nocomma" is a bad command.
, x^2 + y^2 < 1 \right\}$

$g \left( x, y \right) = \frac{y^2 + 4 x^2}{y^2 - 4 x^2 - 1}$, $A = \left\{
\left( x, y \right) \in \mathbb m{R}^2 \left| 0 \leq x^2 - y^2 \leqslant 1
\right\} \right.$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mathzeus1024
1064 posts
#2
Y by
For $f(x,y)$, the domain $A$ is comprised of a region that is bounded between the parabolas $-\frac{x^2}{2} \le y \le \frac{x^2}{2}$ and the circle $x^2+y^2<1$. Furthermore, $f$ is defined for all $(x,y) \in \mathbb{R}^{2} \backslash \{y=-x^2\}$. However, $y=-x^2$ intersects both $y = \pm\frac{x^2}{2}$ at $(0,0) \in A$, and $\lim_{(x,y) \rightarrow (0,0)} f(x,y) = DNE$ (does not exist). Thus, $f$ is not uniformly continuous over $A$ due to $(x,y)=(0,0)$.

For $g(x,y)$, the domain $A$ is comprised of a region that is bounded between the lines $-x \le y \le x$ and the right branch of the hyperbola $x^2-y^2 \le 1$ (which coincidentally has asymptotes $y = \pm x$). Furthermore, $g$ is defined for all $(x,y) \in \mathbb{R}^{2} \backslash \{y^2-4x^2=1\}$, which the intersection of this latter hyperbola and $A = \varnothing$. Hence, $\lim_{(x,y) \rightarrow (p,q)} g(x,y) = L$ exists for any $(x,y) = (p,q) \in A$, and $g$ is uniformly continuous over $A$.
This post has been edited 12 times. Last edited by Mathzeus1024, May 16, 2025, 4:23 PM
Z K Y
N Quick Reply
G
H
=
a