Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Inequalities
sqing   6
N 5 minutes ago by sqing
Let $ a,b,c\geq 0 , (a+8)(b+c)=9.$ Prove that
$$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq  \frac{38}{23}$$Let $ a,b,c\geq 0 , (a+2)(b+c)=3.$ Prove that
$$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq  \frac{2(2\sqrt{3}+1)}{5}$$
6 replies
1 viewing
sqing
May 10, 2025
sqing
5 minutes ago
Thailand MO 2025 P2
Kaimiaku   0
31 minutes ago
A school sent students to compete in an academic olympiad in $11$ differents subjects, each consist of $5$ students. Given that for any $2$ different subjects, there exists a student compete in both subjects. Prove that there exists a student who compete in at least $4$ different subjects.
0 replies
+1 w
Kaimiaku
31 minutes ago
0 replies
Thailand MO 2025 P3
Kaimiaku   2
N 34 minutes ago by lbh_qys
Let $a,b,c,x,y,z$ be positive real numbers such that $ay+bz+cx \le az+bx+cy$. Prove that $$ \frac{xy}{ax+bx+cy}+\frac{yz}{by+cy+az}+\frac{zx}{cz+az+bx} \le \frac{x+y+z}{a+b+c}$$
2 replies
Kaimiaku
an hour ago
lbh_qys
34 minutes ago
Burapha integer
EeEeRUT   1
N an hour ago by ItzsleepyXD
Source: TMO 2025 P1
For each positive integer $m$, denote by $d(m)$ the number of positive divisors of $m$. We say that a positive integer $n$ is Burapha integer if it satisfy the following condition
[list]
[*] $d(n)$ is an odd integer.
[*] $d(k) \leqslant d(\ell)$ holds for every positive divisor $k, \ell$ of $n$, such that $k < \ell$
[/list]
Find all Burapha integer.
1 reply
EeEeRUT
an hour ago
ItzsleepyXD
an hour ago
Algebra inequalities
TUAN2k8   1
N an hour ago by lbh_qys
Source: Own
Is that true?
Let $a_1,a_2,...,a_n$ be real numbers such that $0 \leq a_i \leq 1$ for all $1 \leq i \leq n$.
Prove that: $\sum_{1 \leq i<j \leq n} (a_i-a_j)^2 \leq \frac{n}{2}$.
1 reply
TUAN2k8
an hour ago
lbh_qys
an hour ago
Precision Under Pressure: Regulators for Extreme Applications
amparoschwartz   0
an hour ago
In markets that depend on precise gas and fluid control, maintaining pureness and performance is critical. The Ultra High Purity Pressure Regulator plays a crucial role in ensuring steady and contamination-free procedure, particularly in environments where problems are extreme. Created for use in delicate and high-demand applications, these regulators provide the resilience and accuracy needed to satisfy the toughest functional criteria.

Built for Harsh Settings

Ultra High Purity Pressure Regulators are especially engineered to perform in the most challenging conditions. These regulatory authorities and their control valves are developed to handle destructive media, extreme temperatures, and high pressures. With strong resistance to wear and corrosion, they offer long-lasting reliability even when subjected to aggressive chemicals or continuous high-stress operations. This makes them a vital component in markets such as chemical handling, power generation, and advanced manufacturing.

Preserving Pureness Under Stress

Pureness is non-negotiable in industries such as semiconductors, drugs, and biotechnology. These regulators are designed with ultra-smooth interior surface areas and high-grade materials that protect against fragment generation and contamination. Their building supports a tidy circulation course, ensuring that the honesty of the fluid or gas is kept from resource to application. This interest to purity aids safeguard items, processes, and end-user security.

Accuracy Control in Demanding Applications

An Ultra High Purity Pressure Regulator offers remarkable precision, allowing for regular and stable output also as input pressures or flow needs vary. Exact pressure control is important for preserving procedure uniformity and product top quality. These regulatory authorities respond swiftly and efficiently, making certain systems run successfully and safely without interruptions or variants that could affect sensitive operations. Check out this site [https://www.jewellok.com/blog/ https://www.jewellok.com/blog/] for more details.

Functional Use Throughout Several Industries

From cleanroom settings to chemical labs and industrial production lines, these regulators are functional sufficient to fulfill varied application requirements. Their robust design and contamination-resistant features make them ideal for markets that need both high efficiency and ultra-clean procedure. This versatility makes certain that systems throughout various areas benefit from reliable and efficient pressure control.


Final thought

The [https://www.jewellok.com/blog/ Ultra High Purity Pressure Regulator] is necessary for operations that demand both purity and performance under severe problems. With control shutoffs created to handle harsh substances, high pressures, and temperature levels, these regulators supply a reliable service for liquid and gas control. Their longevity, precision, and capacity to maintain pureness make them a beneficial asset in optimizing intricate processes across a variety of industries.
0 replies
amparoschwartz
an hour ago
0 replies
Quadrilateral with Congruent Diagonals
v_Enhance   37
N an hour ago by Ilikeminecraft
Source: USA TSTST 2012, Problem 2
Let $ABCD$ be a quadrilateral with $AC = BD$. Diagonals $AC$ and $BD$ meet at $P$. Let $\omega_1$ and $O_1$ denote the circumcircle and the circumcenter of triangle $ABP$. Let $\omega_2$ and $O_2$ denote the circumcircle and circumcenter of triangle $CDP$. Segment $BC$ meets $\omega_1$ and $\omega_2$ again at $S$ and $T$ (other than $B$ and $C$), respectively. Let $M$ and $N$ be the midpoints of minor arcs $\widehat {SP}$ (not including $B$) and $\widehat {TP}$ (not including $C$). Prove that $MN \parallel O_1O_2$.
37 replies
v_Enhance
Jul 19, 2012
Ilikeminecraft
an hour ago
geometry
EeEeRUT   1
N an hour ago by ItzsleepyXD
Source: TMO 2025
Let $D,E$ and $F$ be touch points of the incenter of $\triangle ABC$ at $BC, CA$ and $AB$, respectively. Let $P,Q$ and $R$ be the circumcenter of triangles $AFE, BDF$ and $CED$, respectively. Show that $DP, EQ$ and $FR$ concurrent.
1 reply
EeEeRUT
an hour ago
ItzsleepyXD
an hour ago
Spanish Mathematical Olympiad 2002, Problem 1
OmicronGamma   3
N an hour ago by NicoN9
Source: Spanish Mathematical Olympiad 2002
Find all the polynomials $P(t)$ of one variable that fullfill the following for all real numbers $x$ and $y$:
$P(x^2-y^2) = P(x+y)P(x-y)$.
3 replies
OmicronGamma
Jun 2, 2017
NicoN9
an hour ago
Additive set with special property
the_universe6626   1
N 2 hours ago by jasperE3
Source: Janson MO 1 P2
Let $S$ be a nonempty set of positive integers such that:
$\bullet$ if $m,n\in S$ then $m+n\in S$.
$\bullet$ for any prime $p$, there exists $x\in S$ such that $p\nmid x$.
Prove that the set of all positive integers not in $S$ is finite.

(Proposed by cknori)
1 reply
the_universe6626
Feb 21, 2025
jasperE3
2 hours ago
ISI UGB 2025 P4
SomeonecoolLovesMaths   8
N 2 hours ago by chakrabortyahan
Source: ISI UGB 2025 P4
Let $S^1 = \{ z \in \mathbb{C} \mid |z| =1 \}$ be the unit circle in the complex plane. Let $f \colon S^1 \longrightarrow S^2$ be the map given by $f(z) = z^2$. We define $f^{(1)} \colon = f$ and $f^{(k+1)} \colon = f \circ f^{(k)}$ for $k \geq 1$. The smallest positive integer $n$ such that $f^{(n)}(z) = z$ is called the period of $z$. Determine the total number of points in $S^1$ of period $2025$.
(Hint : $2025 = 3^4 \times 5^2$)
8 replies
SomeonecoolLovesMaths
Sunday at 11:24 AM
chakrabortyahan
2 hours ago
book/resource recommendations
walterboro   3
N 2 hours ago by Konigsberg
hi guys, does anyone have book recs (or other resources) for like aime+ level alg, nt, geo, comb? i want to learn a lot of theory in depth
also does anyone know how otis or woot is like from experience?
3 replies
walterboro
Sunday at 8:57 PM
Konigsberg
2 hours ago
So Many Terms
oVlad   7
N 3 hours ago by NuMBeRaToRiC
Source: KöMaL A. 765
Find all functions $f:\mathbb{R}\to\mathbb{R}$ which satisfy the following equality for all $x,y\in\mathbb{R}$ \[f(x)f(y)-f(x-1)-f(y+1)=f(xy)+2x-2y-4.\]Proposed by Dániel Dobák, Budapest
7 replies
oVlad
Mar 20, 2022
NuMBeRaToRiC
3 hours ago
polynomials book recs
sunshine_12   3
N 3 hours ago by sunshine_12
hi all! I know pretty much all of the basic high school algebra upto 11th grade- quadratics, solving equations, matrices nd determinants, etc. I was looking for book recs or handouts on polynomials, but pls know that I have no previous experience whatsoever in olympiad algebra. I did try from an excursion in mathematics but couldn't really approach the problems. any help would be rlly appreciated.
xx
3 replies
sunshine_12
Yesterday at 4:07 PM
sunshine_12
3 hours ago
Proper subsets of R
lgx57   1
N Mar 30, 2025 by alexheinis
Let $S_1,S_2 \cdots S_n$ are proper subsets of $\mathbb{R}$ and they are closed for addition and subtraction. Try to prove that:

$$\displaystyle\bigcup_{i=1}^n S_i \ne \mathbb{R}$$
1 reply
lgx57
Mar 30, 2025
alexheinis
Mar 30, 2025
Proper subsets of R
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
lgx57
41 posts
#1
Y by
Let $S_1,S_2 \cdots S_n$ are proper subsets of $\mathbb{R}$ and they are closed for addition and subtraction. Try to prove that:

$$\displaystyle\bigcup_{i=1}^n S_i \ne \mathbb{R}$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
alexheinis
10593 posts
#2
Y by
Suppose we have $G=\cup_1^n x_kH_k$ where each $H_k$ is a subgroup of $G$. Then it is a result by von Neumann that at least one of the subgroups has finite index in $G$. This solves the problem since $R$ has no proper subgroups of finite index.
Indeed, suppose $A\subset R$ is a subgroup of finite index $n>1$. Then $nx\in A$ for all $x\in R$. Hence $t=n(t/n)\in A$ for all $t$ and $A=R$, contradiction.
Now we give an outline of the proof of von Neumann's result. Write $r$ for the number of distinct sets among the $H_i$, then we perform induction wrt $r$. The lemma is clear for $r=1$. Now suppose that it is true for $r-1$ and that we have $G=\cup_1^n x_kH_k$ and $r>1$.
We may assume $H_1\not=H_n$ and wlog $H_1,\cdots, H_m\not=H_n$ and $H_{m+1},\cdots, H_n=H_n$.
If $G=\cup_{m+1}^n x_iH_i$ then $[G:H_n]<\infty$. Otherwise choose $h\not\in \cup_{m+1}^n x_iH_i$.
Then $hH_n$ is disjoint with $x_iH_i$ for $i>m$ hence $hH_n\subset \sum_1^m x_kH_k$.
Hence for $i>m$ we have $x_i H_i=x_iH_n=x_ih^{-1} hH_n\subset \cup_1^m (x_ih^{-1}x_k)H_k$.
It means that we also have decomposition of $G$ with strictly less than $r$ distinct $H_i$ and we can apply induction.
Z K Y
N Quick Reply
G
H
=
a