Y by
In
points
and
lie on
so that
, while points
and
lie on
so that
. Suppose
,
,
,
,
, and
. Let
be the reflection of
through
, and let
be the reflection of
through
. The area of quadrilateral
is
. Find the area of heptagon
, as shown in the figure below.
![[asy]
unitsize(14);
pair A = (0, 9), B = (-6, 0), C = (12, 0), D = (5A + 2B)/7, E = (2A + 5B)/7, F = (5A + 2C)/7, G = (2A + 5C)/7, M = 2F - D, N = 2E - G;
filldraw(A--F--N--B--C--E--M--cycle, lightgray);
draw(A--B--C--cycle);
draw(D--M);
draw(N--G);
dot(A);
dot(B);
dot(C);
dot(D);
dot(E);
dot(F);
dot(G);
dot(M);
dot(N);
label("$A$", A, dir(90));
label("$B$", B, dir(225));
label("$C$", C, dir(315));
label("$D$", D, dir(135));
label("$E$", E, dir(135));
label("$F$", F, dir(45));
label("$G$", G, dir(45));
label("$M$", M, dir(45));
label("$N$", N, dir(135));
[/asy]](//latex.artofproblemsolving.com/6/4/b/64b0d84a95e0388e37622b54a251d836088fd97c.png)
























![[asy]
unitsize(14);
pair A = (0, 9), B = (-6, 0), C = (12, 0), D = (5A + 2B)/7, E = (2A + 5B)/7, F = (5A + 2C)/7, G = (2A + 5C)/7, M = 2F - D, N = 2E - G;
filldraw(A--F--N--B--C--E--M--cycle, lightgray);
draw(A--B--C--cycle);
draw(D--M);
draw(N--G);
dot(A);
dot(B);
dot(C);
dot(D);
dot(E);
dot(F);
dot(G);
dot(M);
dot(N);
label("$A$", A, dir(90));
label("$B$", B, dir(225));
label("$C$", C, dir(315));
label("$D$", D, dir(135));
label("$E$", E, dir(135));
label("$F$", F, dir(45));
label("$G$", G, dir(45));
label("$M$", M, dir(45));
label("$N$", N, dir(135));
[/asy]](http://latex.artofproblemsolving.com/6/4/b/64b0d84a95e0388e37622b54a251d836088fd97c.png)
This post has been edited 1 time. Last edited by StressedPineapple, Feb 7, 2025, 5:52 PM
Reason: diagram was backwards
Reason: diagram was backwards