Y by centslordm
I saw Silver's post, so I thought I'd share some integrals and sums as well.
It's Christmas!!! (or boxing day.)








![\[
\text{Find: }
10. \sum_{n=1}^\infty \sum_{m=-\infty}^\infty \frac{1}{n^p m^2 (m^2 + 1)^3 (n+1)^q}, \quad 2 \leq p, q \in \mathbb{Z},
\]](//latex.artofproblemsolving.com/f/3/3/f3360b85ce092804a9de263cac49aed025ea8cee.png)
![\[
11. \sum_{n=1}^\infty \sum_{m=-\infty}^\infty \frac{(-1)^{n+m}}{n^p m^2 (m^2 + 1)^3 (n+1)^q}, \quad 2 \leq p, q \in \mathbb{Z}.
\]](//latex.artofproblemsolving.com/9/4/5/945aaa2340a4fb314e5eb218ba5286eb054c1b6f.png)
![\[12.
\int_{0}^{\frac{\pi}{4}} \frac{\sin x}{\cos(2x) + 2} \tan^{-1}\left(\frac{\cos x \cot(2x)}{\sqrt{2}}\right) dx
= \frac{5\pi^2}{48\sqrt{2}} - \frac{\pi}{4\sqrt{2}} \cos^{-1}\left(\frac{1}{3}\right).
\]](//latex.artofproblemsolving.com/b/1/3/b13a5b1c537926c8323170d3d533b0bc71bb06a1.png)
It's Christmas!!! (or boxing day.)








![\[
\text{Find: }
10. \sum_{n=1}^\infty \sum_{m=-\infty}^\infty \frac{1}{n^p m^2 (m^2 + 1)^3 (n+1)^q}, \quad 2 \leq p, q \in \mathbb{Z},
\]](http://latex.artofproblemsolving.com/f/3/3/f3360b85ce092804a9de263cac49aed025ea8cee.png)
![\[
11. \sum_{n=1}^\infty \sum_{m=-\infty}^\infty \frac{(-1)^{n+m}}{n^p m^2 (m^2 + 1)^3 (n+1)^q}, \quad 2 \leq p, q \in \mathbb{Z}.
\]](http://latex.artofproblemsolving.com/9/4/5/945aaa2340a4fb314e5eb218ba5286eb054c1b6f.png)
![\[12.
\int_{0}^{\frac{\pi}{4}} \frac{\sin x}{\cos(2x) + 2} \tan^{-1}\left(\frac{\cos x \cot(2x)}{\sqrt{2}}\right) dx
= \frac{5\pi^2}{48\sqrt{2}} - \frac{\pi}{4\sqrt{2}} \cos^{-1}\left(\frac{1}{3}\right).
\]](http://latex.artofproblemsolving.com/b/1/3/b13a5b1c537926c8323170d3d533b0bc71bb06a1.png)
This post has been edited 7 times. Last edited by Martin.s, Dec 26, 2024, 3:03 PM