Let \[ P(x) = a_0 + a_1 x^2 + a_2 x^4 + \cdots + a_{10} x^{20} \] be a polynom
by Jackson0423, Apr 16, 2025, 3:03 PM
Let
be a polynomial of degree 20 with only even powers of
.
Let the roots of
be
.
Given that
find the **minimum value** of
.
``
![\[
P(x) = a_0 + a_1 x^2 + a_2 x^4 + \cdots + a_{10} x^{20}
\]](http://latex.artofproblemsolving.com/0/d/c/0dcd08456f253de08f3b880c7a1fddc07b335932.png)

Let the roots of


Given that
![\[
(x_1^2 + 1)(x_2^2 + 1) \cdots (x_{20}^2 + 1) = 2025,
\]](http://latex.artofproblemsolving.com/b/a/4/ba4bc5f526565e56a9a685fe01572c1366241084.png)

``
Define a sequence \( a(n) \) by the recurrence \[ a(n) = \left| a(n-1) - a(n-2)
by Jackson0423, Apr 16, 2025, 3:01 PM
Define a sequence
by the recurrence
for all
, with initial values
,
, where
.
Show that for any integers
, there exists a positive integer
such that
for all integers
.

![\[
a(n) = \left| a(n-1) - a(n-2) \right|
\]](http://latex.artofproblemsolving.com/e/7/9/e7981725c3dfd9fd1a0e22c17eded1a4cde84e9f.png)




Show that for any integers


![\[
a(i) = a(i+3)
\]](http://latex.artofproblemsolving.com/d/c/7/dc75144ca27873b2420e79b5e8f045be864a4c2e.png)

Let \( a, b, c \) be positive real numbers satisfying \[ a^2 + c^2 = b(a + c). \
by Jackson0423, Apr 16, 2025, 2:58 PM
Inspired by old results
by sqing, Apr 16, 2025, 2:44 PM
Let
and
Prove that



This post has been edited 2 times. Last edited by sqing, 41 minutes ago
Hard Polynomial Problem
by MinhDucDangCHL2000, Apr 16, 2025, 2:44 PM
Let
be a polynomial with integer coefficients. Suppose there exist infinitely many integer pairs
such that
. Prove that the graph of
is symmetric about a point (i.e., it has a center of symmetry).




Two sets
by steven_zhang123, Apr 16, 2025, 7:44 AM
D1010 : How it is possible ?
by Dattier, Mar 10, 2025, 10:49 AM
Is it true that
?
A=1728400904217815186787639216753921417860004366580219212750904
024377969478249664644267971025952530803647043121025959018172048
336953969062151534282052863307398281681465366665810775710867856
720572225880311472925624694183944650261079955759251769111321319
421445397848518597584590900951222557860592579005088853698315463
815905425095325508106272375728975
B=2275643401548081847207782760491442295266487354750527085289354
965376765188468052271190172787064418854789322484305145310707614
546573398182642923893780527037224143380886260467760991228567577
953725945090125797351518670892779468968705801340068681556238850
340398780828104506916965606659768601942798676554332768254089685
307970609932846902

A=1728400904217815186787639216753921417860004366580219212750904
024377969478249664644267971025952530803647043121025959018172048
336953969062151534282052863307398281681465366665810775710867856
720572225880311472925624694183944650261079955759251769111321319
421445397848518597584590900951222557860592579005088853698315463
815905425095325508106272375728975
B=2275643401548081847207782760491442295266487354750527085289354
965376765188468052271190172787064418854789322484305145310707614
546573398182642923893780527037224143380886260467760991228567577
953725945090125797351518670892779468968705801340068681556238850
340398780828104506916965606659768601942798676554332768254089685
307970609932846902
This post has been edited 6 times. Last edited by Dattier, Mar 16, 2025, 10:10 AM
24 Aug FE problem
by nicky-glass, Aug 24, 2016, 7:34 AM
Problem 2 (First Day)
by Valentin Vornicu, Jul 12, 2004, 2:52 PM
Find all polynomials
with real coefficients such that for all reals
such that
we have the following relations
![\[ f(a-b) + f(b-c) + f(c-a) = 2f(a+b+c). \]](//latex.artofproblemsolving.com/4/4/9/4491a53f9c6f96c18e42eb984b8e83566140bfdb.png)



![\[ f(a-b) + f(b-c) + f(c-a) = 2f(a+b+c). \]](http://latex.artofproblemsolving.com/4/4/9/4491a53f9c6f96c18e42eb984b8e83566140bfdb.png)
"Where wisdom and valor fail, all that remains is faith. . . And it can overcome all." -Toa Mata Tahu
Archives





































































Shouts
Submit
536 shouts
Tags
About Owner
- Posts: 3075
- Joined: Dec 24, 2011
Blog Stats
- Blog created: Jan 14, 2012
- Total entries: 600
- Total visits: 1581959
- Total comments: 771
Search Blog