Y by
Let
be a function whose derivative is continuous on
. Show that
![$$\lim_{n \to \infty} \sum^n_{k = 1}\left[f\left(\frac{k}{n}\right) - f\left(\frac{2k - 1}{2n}\right)\right] = \frac{f(1) - f(0)}{2}.$$](//latex.artofproblemsolving.com/3/1/4/314a1597acae030381f980e6e26c12432f31e069.png)

![$[0,1]$](http://latex.artofproblemsolving.com/e/8/6/e861e10e1c19918756b9c8b7717684593c63aeb8.png)
![$$\lim_{n \to \infty} \sum^n_{k = 1}\left[f\left(\frac{k}{n}\right) - f\left(\frac{2k - 1}{2n}\right)\right] = \frac{f(1) - f(0)}{2}.$$](http://latex.artofproblemsolving.com/3/1/4/314a1597acae030381f980e6e26c12432f31e069.png)
Plan ahead for the next school year. Schedule your class today!
[hide=P#]a1b2c3[/hide] [hide=S#]a1b2c3[/hide]
Something appears to not have loaded correctly.