FE with a lot of terms

by MrHeccMcHecc, Apr 6, 2025, 1:44 PM

Determine all functions $f : \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x,y \in \mathbb{R}$ $$f(x)f(y)+f(x+y)=xf(y)+yf(x)+f(xy)+x+y+1$$

Set Combo <-> Grid Combo

by Mathdreams, Apr 6, 2025, 1:36 PM

Consider an $n \times n$ grid, where $n$ is a composite integer.

The $n^2$ unit squares are divided up into $a$ disjoint sets of $b$ unit squares arbitrarily such that $ab = n^2$. Denote this family of sets as $S$.

The $n^2$ unit squares are again divided up into $c$ disjoint sets of $d$ unit squares arbitrarily such that $cd = n^2$. Denote this family of sets as $T$.

Is it necessarily possible to choose $\min(a,c)$ unit squares such that no two unit squares are in the same set of $S$ or the same set of $T$?

(Shining Sun, USA)

Two Functional Inequalities

by Mathdreams, Apr 6, 2025, 1:34 PM

Determine all functions $f : \mathbb{R} \rightarrow \mathbb{R}$ such that $$f(x) \le x^3$$and $$f(x + y) \le f(x) + f(y) + 3xy(x + y)$$for any real numbers $x$ and $y$.

(Miroslav Marinov, Bulgaria)

Two Orthocenters and an Invariant Point

by Mathdreams, Apr 6, 2025, 1:30 PM

Let $\triangle{ABC}$ be a triangle, and let $P$ be an arbitrary point on line $AO$, where $O$ is the circumcenter of $\triangle{ABC}$. Define $H_1$ and $H_2$ as the orthocenters of triangles $\triangle{APB}$ and $\triangle{APC}$. Prove that $H_1H_2$ passes through a fixed point which is independent of the choice of $P$.

(Kritesh Dhakal, Nepal)

Inspired by 2012 Romania and 2021 BH

by sqing, Apr 6, 2025, 1:28 PM

Let $ a, b, c, d\geq 0 , bc + d + a = 5, cd + a + b = 2 $ and $ da + b + c = 6. $ Prove that
$$3\leq  ab + c + d\leq 2\sqrt{13}-1 $$$$5\leq a+ b+ c +d  \leq\frac{1}{2}(11+\sqrt{13})$$$$ \sqrt{13}+1  \leq   a b +bc+ c d+d a \leq 6$$
This post has been edited 2 times. Last edited by sqing, 24 minutes ago

Sum of Squares of Digits is Periodic

by Mathdreams, Apr 6, 2025, 1:28 PM

For any positive integer $n$, let $f(n)$ denote the sum of squares of digits of $n$. Prove that the sequence $$f(n), f(f(n)), f(f(f(n))), \cdots$$is eventually periodic.

(Kritesh Dhakal, Nepal)

3 var inquality

by sqing, Apr 6, 2025, 1:11 PM

Common tangent to diameter circles

by Stuttgarden, Mar 31, 2025, 1:06 PM

The cyclic quadrilateral $ABCD$, inscribed in the circle $\Gamma$, satisfies $AB=BC$ and $CD=DA$, and $E$ is the intersection point of the diagonals $AC$ and $BD$. The circle with center $A$ and radius $AE$ intersects $\Gamma$ in two points $F$ and $G$. Prove that the line $FG$ is tangent to the circles with diameters $BE$ and $DE$.

inequality

by pennypc123456789, Mar 24, 2025, 11:17 AM

Let \( x, y \) be positive real numbers satisfying \( x + y = 2 \). Prove that

\[
3(x^{\frac{2}{3}} + y^{\frac{2}{3}}) \geq 4 + 2x^{\frac{1}{3}}y^{\frac{1}{3}}.
\]
This post has been edited 1 time. Last edited by pennypc123456789, Mar 24, 2025, 11:22 AM

Ratios in a right triangle

by PNT, Jun 9, 2023, 10:58 PM

Let $ABC$ be a right triangle in $A$ with $AB<AC$. Let $M$ be the midpoint of $AB$ and $D$ a point on $AC$ such that $DC=DB$. Let $X=(BDC)\cap MD$.
Compute in terms of $AB,BC$ and $AC$ the ratio $\frac{BX}{DX}$.

♪ i just hope you understand / sometimes the clothes do not make the man ♫ // https://beta.vero.site/

avatar

math_explorer
Archives
+ September 2019
+ February 2018
+ December 2017
+ September 2017
+ July 2017
+ March 2017
+ January 2017
+ November 2016
+ October 2016
+ August 2016
+ February 2016
+ January 2016
+ September 2015
+ July 2015
+ June 2015
+ January 2015
+ July 2014
+ June 2014
inv
+ April 2014
+ December 2013
+ November 2013
+ September 2013
+ February 2013
+ April 2012
Shouts
Submit
  • how do you have so many posts

    by krithikrokcs, Jul 14, 2023, 6:20 PM

  • lol⠀⠀⠀⠀⠀

    by math_explorer, Jan 20, 2021, 8:43 AM

  • woah ancient blog

    by suvamkonar, Jan 20, 2021, 4:14 AM

  • https://artofproblemsolving.com/community/c47h361466

    by math_explorer, Jun 10, 2020, 1:20 AM

  • when did the first greed control game start?

    by piphi, May 30, 2020, 1:08 AM

  • ok..........

    by asdf334, Sep 10, 2019, 3:48 PM

  • There is one existing way to obtain contributorship documented on this blog. See if you can find it.

    by math_explorer, Sep 10, 2019, 2:03 PM

  • SO MANY VIEWS!!!
    PLEASE CONTRIB
    :)

    by asdf334, Sep 10, 2019, 1:58 PM

  • Hullo bye

    by AnArtist, Jan 15, 2019, 8:59 AM

  • Hullo bye

    by tastymath75025, Nov 22, 2018, 9:08 PM

  • Hullo bye

    by Kayak, Jul 22, 2018, 1:29 PM

  • It's sad; the blog is still active but not really ;-;

    by GeneralCobra19, Sep 21, 2017, 1:09 AM

  • dope css

    by zxcv1337, Mar 27, 2017, 4:44 AM

  • nice blog ^_^

    by chezbgone, Mar 28, 2016, 5:18 AM

  • shouts make blogs happier

    by briantix, Mar 18, 2016, 9:58 PM

91 shouts
Contributors
Tags
About Owner
  • Posts: 583
  • Joined: Dec 16, 2006
Blog Stats
  • Blog created: May 17, 2010
  • Total entries: 327
  • Total visits: 355276
  • Total comments: 368
Search Blog
a