Very odd geo

by Royal_mhyasd, May 30, 2025, 6:10 PM

Let $\triangle ABC$ be an acute triangle with $AC>AB>BC$ and let $H$ be its orthocenter. Let $P$ be a point on the perpendicular bisector of $AH$ such that $\angle APH=2(\angle ABC - \angle ACB)$ and $P$ and $C$ are on different sides of $AB$, $Q$ a point on the perpendicular bisector of $BH$ such that $\angle BQH = 2(\angle ACB-\angle BAC)$ and $R$ a point on the perpendicular bisector of $CH$ such that $\angle CRH=2(\angle ABC - \angle BAC)$ and $Q,R$ lie on the opposite side of $BC$ w.r.t $A$. Prove that $P,Q$ and $R$ are collinear.
Attachments:

Iran TST Starter

by M11100111001Y1R, May 27, 2025, 7:36 AM

Let \( a_n \) be a sequence of positive real numbers such that for every \( n > 2025 \), we have:
\[
a_n = \max_{1 \leq i \leq 2025} a_{n-i} - \min_{1 \leq i \leq 2025} a_{n-i}
\]Prove that there exists a natural number \( M \) such that for all \( n > M \), the following holds:
\[
a_n < \frac{1}{1404}
\]

Calculating sum of the numbers

by Sadigly, May 9, 2025, 7:56 AM

A $3\times3$ square is filled with numbers $1;2;3...;9$.The numbers inside four $2\times2$ squares is summed,and arranged in an increasing order. Is it possible to obtain the following sequences as a result of this operation?

$\text{a)}$ $24,24,25,25$

$\text{b)}$ $20,23,26,29$
This post has been edited 1 time. Last edited by Sadigly, May 9, 2025, 9:41 AM

Find the value

by sqing, Jun 22, 2024, 12:49 PM

Let $f(x)=a_6x^6+a_5x^5+a_4x^4+a_3x^3+a_2x^2+a_1x+a_0,$ $a_i\in\{-1,1\} ,i=0,1,2,\cdots,6 $ and $f(2)=-53 .$ Find the value of $f(1).$

A circle tangent to AB,AC with center J!

by Noob_at_math_69_level, Dec 18, 2023, 5:38 PM

Let $\triangle{ABC}$ be a triangle with a circle $\Omega$ with center $J$ tangent to sides $AC,AB$ at $E,F$ respectively. Suppose the circle with diameter $AJ$ intersects the circumcircle of $\triangle{ABC}$ again at $T.$ $T'$ is the reflection of $T$ over $AJ$. Suppose points $X,Y$ lie on $\Omega$ such that $EX,FY$ are parallel to $BC$. Prove that: The intersection of $BX,CY$ lie on the circumcircle of $\triangle{BT'C}.$

Proposed by Dtong08math & many authors
This post has been edited 2 times. Last edited by Noob_at_math_69_level, Dec 18, 2023, 7:26 PM

Swap to the symmedian

by Noob_at_math_69_level, Dec 18, 2023, 5:35 PM

Let $\triangle{ABC}$ be a triangle with points $U,V$ lie on the perpendicular bisector of $BC$ such that $B,U,V,C$ lie on a circle. Suppose $UD,UE,UF$ are perpendicular to sides $BC,AC,AB$ at points $D,E,F.$ The tangent lines from points $E,F$ to the circumcircle of $\triangle{DEF}$ intersects at point $S.$ Prove that: $AV,DS$ are parallel.

Proposed by Paramizo Dicrominique
This post has been edited 1 time. Last edited by Noob_at_math_69_level, Dec 18, 2023, 7:27 PM

m^m+ n^n=k^k

by parmenides51, Apr 4, 2021, 5:14 PM

Are there natural numbers $(m,n,k)$ that satisfy the equation $m^m+ n^n=k^k$ ?
This post has been edited 1 time. Last edited by parmenides51, Apr 4, 2021, 5:17 PM

f(x+f(x)+f(y))=x+f(x+y)

by dangerousliri, May 31, 2020, 6:01 PM

Find all functions $f:\mathbb{R}^+\rightarrow\mathbb{R}^+$ such that for any positive real numbers $x$ and $y$,
$$f(x+f(x)+f(y))=x+f(x+y)$$Proposed by Athanasios Kontogeorgis, Grecce, and Dorlir Ahmeti, Kosovo

Easy functional equation

by fattypiggy123, Jul 5, 2014, 8:41 AM

Find all functions from the reals to the reals satisfying
\[f(xf(y) + x) = xy + f(x)\]

Find (AB * CD) / (AC * BD) & prove orthogonality of circles

by Maverick, Jul 13, 2004, 3:05 PM

Let $A$, $B$, $C$, $D$ be four points in the plane, with $C$ and $D$ on the same side of the line $AB$, such that $AC \cdot BD = AD \cdot BC$ and $\angle ADB = 90^{\circ}+\angle ACB$. Find the ratio
\[\frac{AB \cdot CD}{AC \cdot BD}, \]
and prove that the circumcircles of the triangles $ACD$ and $BCD$ are orthogonal. (Intersecting circles are said to be orthogonal if at either common point their tangents are perpendicuar. Thus, proving that the circumcircles of the triangles $ACD$ and $BCD$ are orthogonal is equivalent to proving that the tangents to the circumcircles of the triangles $ACD$ and $BCD$ at the point $C$ are perpendicular.)

♪ i just hope you understand / sometimes the clothes do not make the man ♫ // https://beta.vero.site/

avatar

math_explorer
Archives
+ September 2019
+ February 2018
+ December 2017
+ September 2017
+ July 2017
+ March 2017
+ January 2017
+ November 2016
+ October 2016
+ August 2016
+ February 2016
+ January 2016
+ September 2015
+ July 2015
+ June 2015
+ January 2015
+ July 2014
+ June 2014
inv
+ April 2014
+ December 2013
+ November 2013
+ September 2013
+ February 2013
+ April 2012
Shouts
Submit
  • how do you have so many posts

    by krithikrokcs, Jul 14, 2023, 6:20 PM

  • lol⠀⠀⠀⠀⠀

    by math_explorer, Jan 20, 2021, 8:43 AM

  • woah ancient blog

    by suvamkonar, Jan 20, 2021, 4:14 AM

  • https://artofproblemsolving.com/community/c47h361466

    by math_explorer, Jun 10, 2020, 1:20 AM

  • when did the first greed control game start?

    by piphi, May 30, 2020, 1:08 AM

  • ok..........

    by asdf334, Sep 10, 2019, 3:48 PM

  • There is one existing way to obtain contributorship documented on this blog. See if you can find it.

    by math_explorer, Sep 10, 2019, 2:03 PM

  • SO MANY VIEWS!!!
    PLEASE CONTRIB
    :)

    by asdf334, Sep 10, 2019, 1:58 PM

  • Hullo bye

    by AnArtist, Jan 15, 2019, 8:59 AM

  • Hullo bye

    by tastymath75025, Nov 22, 2018, 9:08 PM

  • Hullo bye

    by Kayak, Jul 22, 2018, 1:29 PM

  • It's sad; the blog is still active but not really ;-;

    by GeneralCobra19, Sep 21, 2017, 1:09 AM

  • dope css

    by zxcv1337, Mar 27, 2017, 4:44 AM

  • nice blog ^_^

    by chezbgone, Mar 28, 2016, 5:18 AM

  • shouts make blogs happier

    by briantix, Mar 18, 2016, 9:58 PM

91 shouts
Contributors
Tags
About Owner
  • Posts: 583
  • Joined: Dec 16, 2006
Blog Stats
  • Blog created: May 17, 2010
  • Total entries: 327
  • Total visits: 360121
  • Total comments: 368
Search Blog
a