Periodicity of factorials

by Cats_on_a_computer, May 31, 2025, 11:17 AM

Let a_k denote the first non zero digit of the decimal representation of k!. Does the sequence a_1, a_2, a_3, … eventually become periodic?

Inequality in triangle

by Nguyenhuyen_AG, May 31, 2025, 6:17 AM

Let $a,b,c$ be the lengths of the sides of a triangle. Prove that
\[\frac{1}{(a-4b)^2}+\frac{1}{(b-4c)^2}+\frac{1}{(c-4a)^2} \geqslant \frac{1}{ab+bc+ca}.\]

Tough inequality

by TUAN2k8, May 28, 2025, 2:03 AM

Let $n \ge 2$ be an even integer and let $x_1,x_2,...,x_n$ be real numbers satisfying $x_1^2+x_2^2+...+x_n^2=n$.
Prove that
$\sum_{1 \le i < j \le n} \frac{x_ix_j}{x_i^2+x_j^2+1} \ge \frac{-n}{6}$
This post has been edited 1 time. Last edited by TUAN2k8, Today at 1:23 AM
Reason: .

Symmetric points part 2

by CyclicISLscelesTrapezoid, Jun 27, 2022, 4:00 PM

Let $O$ and $H$ be the circumcenter and orthocenter, respectively, of an acute scalene triangle $ABC$. The perpendicular bisector of $\overline{AH}$ intersects $\overline{AB}$ and $\overline{AC}$ at $X_A$ and $Y_A$ respectively. Let $K_A$ denote the intersection of the circumcircles of triangles $OX_AY_A$ and $BOC$ other than $O$.

Define $K_B$ and $K_C$ analogously by repeating this construction two more times. Prove that $K_A$, $K_B$, $K_C$, and $O$ are concyclic.

Hongzhou Lin
This post has been edited 1 time. Last edited by CyclicISLscelesTrapezoid, Jun 27, 2022, 4:08 PM

NICE INEQUALITY

by Kyleray, Mar 11, 2021, 2:47 PM

Converse of a classic orthocenter problem

by spartacle, Dec 14, 2020, 5:00 PM

Let $A$, $B$, $C$, $D$ be four points such that no three are collinear and $D$ is not the orthocenter of $ABC$. Let $P$, $Q$, $R$ be the orthocenters of $\triangle BCD$, $\triangle CAD$, $\triangle ABD$, respectively. Suppose that the lines $AP$, $BQ$, $CR$ are pairwise distinct and are concurrent. Show that the four points $A$, $B$, $C$, $D$ lie on a circle.

Andrew Gu
This post has been edited 2 times. Last edited by v_Enhance, Mar 1, 2021, 5:21 PM

Easy Diophantne

by anantmudgal09, Dec 9, 2017, 1:11 PM

Find all positive integers $p,q,r,s>1$ such that $$p!+q!+r!=2^s.$$

Problem 1

by randomusername, Jul 10, 2015, 8:12 AM

We say that a finite set $\mathcal{S}$ of points in the plane is balanced if, for any two different points $A$ and $B$ in $\mathcal{S}$, there is a point $C$ in $\mathcal{S}$ such that $AC=BC$. We say that $\mathcal{S}$ is centre-free if for any three different points $A$, $B$ and $C$ in $\mathcal{S}$, there is no points $P$ in $\mathcal{S}$ such that $PA=PB=PC$.

(a) Show that for all integers $n\ge 3$, there exists a balanced set consisting of $n$ points.

(b) Determine all integers $n\ge 3$ for which there exists a balanced centre-free set consisting of $n$ points.

Proposed by Netherlands
This post has been edited 3 times. Last edited by v_Enhance, Jul 26, 2015, 2:46 PM
Reason: Missing $n$ in part (b)

x is rational implies y is rational

by pohoatza, Jun 28, 2007, 7:24 PM

For $ x \in (0, 1)$ let $ y \in (0, 1)$ be the number whose $ n$-th digit after the decimal point is the $ 2^{n}$-th digit after the decimal point of $ x$. Show that if $ x$ is rational then so is $ y$.

Proposed by J.P. Grossman, Canada

Multiplicative function

by Tales, Mar 23, 2005, 2:50 AM

The function $f$ from the set $\mathbb{N}$ of positive integers into itself is defined by the equality \[f(n)=\sum_{k=1}^{n} \gcd(k,n),\qquad n\in \mathbb{N}.\]
a) Prove that $f(mn)=f(m)f(n)$ for every two relatively prime ${m,n\in\mathbb{N}}$.

b) Prove that for each $a\in\mathbb{N}$ the equation $f(x)=ax$ has a solution.

c) Find all ${a\in\mathbb{N}}$ such that the equation $f(x)=ax$ has a unique solution.
This post has been edited 2 times. Last edited by djmathman, Aug 1, 2015, 2:54 AM
Reason: formatting

♪ i just hope you understand / sometimes the clothes do not make the man ♫ // https://beta.vero.site/

avatar

math_explorer
Archives
+ September 2019
+ February 2018
+ December 2017
+ September 2017
+ July 2017
+ March 2017
+ January 2017
+ November 2016
+ October 2016
+ August 2016
+ February 2016
+ January 2016
+ September 2015
+ July 2015
+ June 2015
+ January 2015
+ July 2014
+ June 2014
inv
+ April 2014
+ December 2013
+ November 2013
+ September 2013
+ February 2013
+ April 2012
Shouts
Submit
  • how do you have so many posts

    by krithikrokcs, Jul 14, 2023, 6:20 PM

  • lol⠀⠀⠀⠀⠀

    by math_explorer, Jan 20, 2021, 8:43 AM

  • woah ancient blog

    by suvamkonar, Jan 20, 2021, 4:14 AM

  • https://artofproblemsolving.com/community/c47h361466

    by math_explorer, Jun 10, 2020, 1:20 AM

  • when did the first greed control game start?

    by piphi, May 30, 2020, 1:08 AM

  • ok..........

    by asdf334, Sep 10, 2019, 3:48 PM

  • There is one existing way to obtain contributorship documented on this blog. See if you can find it.

    by math_explorer, Sep 10, 2019, 2:03 PM

  • SO MANY VIEWS!!!
    PLEASE CONTRIB
    :)

    by asdf334, Sep 10, 2019, 1:58 PM

  • Hullo bye

    by AnArtist, Jan 15, 2019, 8:59 AM

  • Hullo bye

    by tastymath75025, Nov 22, 2018, 9:08 PM

  • Hullo bye

    by Kayak, Jul 22, 2018, 1:29 PM

  • It's sad; the blog is still active but not really ;-;

    by GeneralCobra19, Sep 21, 2017, 1:09 AM

  • dope css

    by zxcv1337, Mar 27, 2017, 4:44 AM

  • nice blog ^_^

    by chezbgone, Mar 28, 2016, 5:18 AM

  • shouts make blogs happier

    by briantix, Mar 18, 2016, 9:58 PM

91 shouts
Contributors
Tags
About Owner
  • Posts: 583
  • Joined: Dec 16, 2006
Blog Stats
  • Blog created: May 17, 2010
  • Total entries: 327
  • Total visits: 360144
  • Total comments: 368
Search Blog
a