Baltic Way Part 1
by djmathman, Nov 13, 2014, 2:54 AM
Problem 1 wrote:
Show that
![\[\cos(56^\circ)\cdot\cos(2\cdot 56^\circ)\cdot\cos(2^2\cdot 56^\circ)\cdot\ldots\cdot\cos(2^{23}\cdot 56^\circ)=\dfrac1{2^{24}}.\]](//latex.artofproblemsolving.com/0/5/4/054457d8caba8b45c6a890903ae115104fbd0b1e.png)
![\[\cos(56^\circ)\cdot\cos(2\cdot 56^\circ)\cdot\cos(2^2\cdot 56^\circ)\cdot\ldots\cdot\cos(2^{23}\cdot 56^\circ)=\dfrac1{2^{24}}.\]](http://latex.artofproblemsolving.com/0/5/4/054457d8caba8b45c6a890903ae115104fbd0b1e.png)
Note that for any angle
,
,
, and so on, up to
Multiplying all twenty-four equalities together and setting
yields
![\[\cos(56^\circ)\cdot\cos(2\cdot 56^\circ)\cdot\cos(2^2\cdot 56^\circ)\cdot\ldots\cdot\cos(2^{23}\cdot 56^\circ)=\dfrac{\sin(2^{24}56^\circ)}{2^{24}\sin 56^\circ}.\]](//latex.artofproblemsolving.com/f/1/2/f12e1d2b7c8d06905cf7c07a1a2a47e89dd3b3cf.png)
Now I claim that
, as then the sines of the two angles will be equal, proving the original statement. To do this, rewrite
as
, and let it equal
. Note that
so it suffices mod
,
, and
. It is not hard to check that
,
, and
. As
satisfies all of these properties, we get
as desired. 





![\[\cos(56^\circ)\cdot\cos(2\cdot 56^\circ)\cdot\cos(2^2\cdot 56^\circ)\cdot\ldots\cdot\cos(2^{23}\cdot 56^\circ)=\dfrac{\sin(2^{24}56^\circ)}{2^{24}\sin 56^\circ}.\]](http://latex.artofproblemsolving.com/f/1/2/f12e1d2b7c8d06905cf7c07a1a2a47e89dd3b3cf.png)
Now I claim that














Problem 2 wrote:
Let
be real numbers satisfying
and
![\[a_{i+1}-2a_i+a_{i-1}=a_i^2\]](//latex.artofproblemsolving.com/9/0/c/90c7bd11382a1e29166b61667600f8a377ec469b.png)
for
. Prove that
for
.


![\[a_{i+1}-2a_i+a_{i-1}=a_i^2\]](http://latex.artofproblemsolving.com/9/0/c/90c7bd11382a1e29166b61667600f8a377ec469b.png)
for



Let
, so the condition becomes
for each
. Note that since
we get
, so
is a nondecreasing sequence. Next, from the definition of the
we obtain
![\[b_0+b_1+b_2+\cdots+b_{N-1}=a_N-a_0=0.\]](//latex.artofproblemsolving.com/e/e/1/ee116aa3771d5b9d3a7dbb2ec6e931b66593e1a5.png)
If
then
for each
, contradiction, so
.
Now move down the line. For any positive integer
, we get
. If
is positive, then there must exist some
that is positive, where
. Hence all subsequent
are positive, deriving a contradiction. Therefore
for all
. 







![\[b_0+b_1+b_2+\cdots+b_{N-1}=a_N-a_0=0.\]](http://latex.artofproblemsolving.com/e/e/1/ee116aa3771d5b9d3a7dbb2ec6e931b66593e1a5.png)
If




Now move down the line. For any positive integer









Problem 3 wrote:
Positive real numbers
,
,
satisfy
. Prove the inequality
![\[\dfrac1{\sqrt{a^3+b}}+\dfrac1{\sqrt{b^3+c}}+\dfrac1{\sqrt{c^3+a}}\leq\dfrac3{\sqrt2}.\]](//latex.artofproblemsolving.com/c/8/0/c8010f1d911b733b47ad6550f29920d688bccc90.png)




![\[\dfrac1{\sqrt{a^3+b}}+\dfrac1{\sqrt{b^3+c}}+\dfrac1{\sqrt{c^3+a}}\leq\dfrac3{\sqrt2}.\]](http://latex.artofproblemsolving.com/c/8/0/c8010f1d911b733b47ad6550f29920d688bccc90.png)
Terrible solution incoming.
LEMMA: Let
and
be positive real numbers such that
and
. Then
![\[\dfrac1{\sqrt{a^3+b}}\leq\dfrac ma+\dfrac nb.\]](//latex.artofproblemsolving.com/6/6/6/666802069fffad8f86e74310bd801d021590d34c.png)
Proof. Squaring and cross-multiplying both sides yields

Let
denote this above expression. Now note that assigning "weights" of
to the
and
terms and
to everything else gives an AM-GM mess of
![\begin{align*}E&\geq12\sqrt[12]{(n^2a^5)(2mna^4)\left(\dfrac14m^2a^3b^2\right)^4(n^2a^2b)(2mnab^2)\left(\dfrac14m^2b^3\right)^4}\\&=12\sqrt[12]{\dfrac{n^6m^{18}a^{24}b^{24}}{2^{14}}}=a^2b^2\left(\dfrac{9\sqrt{nm^3}}{2^{1/6}}\right)=(ab)^2\end{align*}](//latex.artofproblemsolving.com/c/9/f/c9f5a2d35612d619aa4a212c76e01418ede18b5e.png)
as desired.
Now just note that
![\[\sum\dfrac1{\sqrt{a^3+b}}\leq\sum\left(\dfrac ma+\dfrac nb\right)=(m+n)\left(\dfrac1a+\dfrac1b+\dfrac1c\right)=\dfrac{3}{\sqrt2}.\qquad\blacksquare\]](//latex.artofproblemsolving.com/a/d/5/ad5d1b88416f7d7dec7f0bc12200d8d4d5c5828b.png)
REMARK: When doing this problem, I didn't realize that I could AM-GM each of the two expressions in the original product. That probably could have made the task of finding suitable
and
much much easier (and frankly, maybe it could have found nicer constants).
LEMMA: Let



![$m^3n=\tfrac{\sqrt[3]{2}}{81}$](http://latex.artofproblemsolving.com/4/2/b/42b9dd5d486ffba2e947618a0b22b76e241187d9.png)
![\[\dfrac1{\sqrt{a^3+b}}\leq\dfrac ma+\dfrac nb.\]](http://latex.artofproblemsolving.com/6/6/6/666802069fffad8f86e74310bd801d021590d34c.png)
Proof. Squaring and cross-multiplying both sides yields

Let





![\begin{align*}E&\geq12\sqrt[12]{(n^2a^5)(2mna^4)\left(\dfrac14m^2a^3b^2\right)^4(n^2a^2b)(2mnab^2)\left(\dfrac14m^2b^3\right)^4}\\&=12\sqrt[12]{\dfrac{n^6m^{18}a^{24}b^{24}}{2^{14}}}=a^2b^2\left(\dfrac{9\sqrt{nm^3}}{2^{1/6}}\right)=(ab)^2\end{align*}](http://latex.artofproblemsolving.com/c/9/f/c9f5a2d35612d619aa4a212c76e01418ede18b5e.png)
as desired.

Now just note that
![\[\sum\dfrac1{\sqrt{a^3+b}}\leq\sum\left(\dfrac ma+\dfrac nb\right)=(m+n)\left(\dfrac1a+\dfrac1b+\dfrac1c\right)=\dfrac{3}{\sqrt2}.\qquad\blacksquare\]](http://latex.artofproblemsolving.com/a/d/5/ad5d1b88416f7d7dec7f0bc12200d8d4d5c5828b.png)
REMARK: When doing this problem, I didn't realize that I could AM-GM each of the two expressions in the original product. That probably could have made the task of finding suitable


This post has been edited 2 times. Last edited by djmathman, Mar 5, 2015, 3:43 AM
Reason: align tags
Reason: align tags