2022 AMC and AIME proposals
by djmathman, Feb 18, 2022, 1:11 AM
Had quite a few this year. Probably will be the last year I have this many.
10A 2 / 12A 2 (Summer 2020). Menkara has a
index card. If she shortens the length of one side of this card by
inch, the card would have area
square inches. What would the area of the card be in square inches if instead she shortens the length of the other side by
inch?
12A 21 (April/May 2020). Let
be an isosceles trapezoid with
and
. Points
and
lie on diagonal
with
between
and
, as shown in the figure. Suppose
,
,
, and
. What is the area of 
10B 4 (Summer 2020). At noon on a certain day, Minneapolis is
degrees warmer than St. Louis. At
the temperature in Minneapolis has fallen by
degrees while the temperature in St. Louis has risen by
degrees, at which time the temperatures in the two cities differ by
degrees. What is the product of all possible values of 
10B 15 (Summer 2019). In square
, points
and
lie on
and
, respectively. Segments
and
intersect at right angles at
, with
and
. What is the area of the square?
![[asy] size(130); defaultpen(linewidth(0.6)+fontsize(10)); real r = 3.5; pair A = origin, B = (5,0), C = (5,5), D = (0,5), P = (0,r), Q = (5-r,0), R = intersectionpoint(B--P,C--Q); draw(A--B--C--D--A^^B--P^^C--Q^^rightanglemark(P,R,C,7)); dot("$A$",A,S); dot("$B$",B,S); dot("$C$",C,N); dot("$D$",D,N); dot("$Q$",Q,S); dot("$P$",P,W); dot("$R$",R,1.3*S); label("$7$",(P+R)/2,NE); label("$6$",(R+B)/2,NE); [/asy]](//latex.artofproblemsolving.com/c/d/b/cdbf61b5c0e0123252d0e8083f70f0065be70554.png)
12B 16 (March 2020). Let
and
be positive integers such that
and
What is the sum of all possible distinct values of
?
10B 25 (March 2020). A rectangle with side lengths
and
a square with side length
and a rectangle
are inscribed inside a larger square as shown. The sum of all possible values for the area of
can be written in the form
, where
and
are relatively prime positive integers. What is 
AIME I 1 (December 2020). Quadratic polynomials
and
have leading coefficients of
and
, respectively. The graphs of both polynomials pass through the two points
and
. Find
.
AIME I 11 (May/June 2020). Let
be a parallelogram with
. A circle tangent to sides
,
, and
intersects diagonal
at points
and
with
, as shown. Suppose that
,
, and
. Then the area of
can be expressed in the form
, where
and
are positive integers, and
is not divisible by the square of any prime. Find
.
AIME II 5 (December 2019). Twenty distinct points are marked on a circle and labeled
through
in clockwise order. A line segment is drawn between every pair of points whose labels differ by a prime number. Find the number of triangles formed whose vertices are among the original
points.
AIME II 8 (April 2020). Find the number of positive integers
whose value can be uniquely determined when the values of
,
, and
are given, where
denotes the greatest integer less than or equal to the real number
.
AIME II 11 (February 2020). Let
be a convex quadrilateral with
and
such that the bisectors of acute angles
and
intersect at the midpoint of
Find the square of the area of 
AIME II 15 (December 2019). Two externally tangent circles
and
have centers
and
, respectively. A third circle
passing through
and
intersects
at
and
and
at
and
, as shown. Suppose that
,
,
, and
is a convex hexagon. Find the area of this hexagon.
Overall, I'm quite happy with this group of problems
I personally believe my AIME proposals are stronger than my AMC proposals, but I'm pleasantly surprised at the reception to my AMC problems, too. (I thought 12B 16 was meh and feared people would hate me for 10B 25....) Personal favorites are probably 10B 15 and AIME II 15, but you could probably convince me that quite a few others are up there, too.
10A 2 / 12A 2 (Summer 2020). Menkara has a




12A 21 (April/May 2020). Let














![[asy] size(5cm); usepackage("mathptmx"); import geometry; void perp(picture pic=currentpicture, pair O, pair M, pair B, real size=5, pen p=currentpen, filltype filltype = NoFill){ perpendicularmark(pic, M,unit(unit(O-M)+unit(B-M)),size,p,filltype); } pen p=black+linewidth(0.8),q=black+linewidth(4.5); pair C=(0,0),Y=(2,0),X=(3,0),A=(6,0),B=(2,sqrt(5.6)),D=(3,-sqrt(12.6)); draw(A--B--C--D--cycle,p); draw(A--C,p); draw(B--Y,p); draw(D--X,p); dot(A,q); dot(B,q); dot(C,q); dot(D,q); dot(X,q); dot(Y,q); label("2",C--Y,S); label("1",Y--X,S); label("3",X--A,S); label("$A$",A,E); label("$B$",B,N); label("$C$",C,W); label("$D$",D,S); label("$Y$",Y,sqrt(2)*NE); label("$X$",X,N); perp(B,Y,C,8,p); perp(A,X,D,8,p); [/asy]](http://latex.artofproblemsolving.com/9/f/e/9fe428a0357350b7518ad394f7ec668980159957.png)
10B 4 (Summer 2020). At noon on a certain day, Minneapolis is






10B 15 (Summer 2019). In square










![[asy] size(130); defaultpen(linewidth(0.6)+fontsize(10)); real r = 3.5; pair A = origin, B = (5,0), C = (5,5), D = (0,5), P = (0,r), Q = (5-r,0), R = intersectionpoint(B--P,C--Q); draw(A--B--C--D--A^^B--P^^C--Q^^rightanglemark(P,R,C,7)); dot("$A$",A,S); dot("$B$",B,S); dot("$C$",C,N); dot("$D$",D,N); dot("$Q$",Q,S); dot("$P$",P,W); dot("$R$",R,1.3*S); label("$7$",(P+R)/2,NE); label("$6$",(R+B)/2,NE); [/asy]](http://latex.artofproblemsolving.com/c/d/b/cdbf61b5c0e0123252d0e8083f70f0065be70554.png)
12B 16 (March 2020). Let



![\[\gcd(a,b)+\gcd(b,c)+\gcd(c,a)=9.\]](http://latex.artofproblemsolving.com/c/8/6/c86314b09c49a0f977dc31b9885edaaceafe776a.png)

10B 25 (March 2020). A rectangle with side lengths









![[asy] size(6cm); draw((0,0)--(10,0)); draw((0,0)--(0,10)); draw((10,0)--(10,10)); draw((0,10)--(10,10)); draw((1,6)--(0,9)); draw((0,9)--(3,10)); draw((3,10)--(4,7)); draw((4,7)--(1,6)); draw((0,3)--(1,6)); draw((1,6)--(10,3)); draw((10,3)--(9,0)); draw((9,0)--(0,3)); draw((6,13/3)--(10,22/3)); draw((10,22/3)--(8,10)); draw((8,10)--(4,7)); draw((4,7)--(6,13/3)); label("$3$",(9/2,3/2),N); label("$3$",(11/2,9/2),S); label("$1$",(1/2,9/2),E); label("$1$",(19/2,3/2),W); label("$1$",(1/2,15/2),E); label("$1$",(3/2,19/2),S); label("$1$",(5/2,13/2),N); label("$1$",(7/2,17/2),W); label("$R$",(7,43/6),W); [/asy]](http://latex.artofproblemsolving.com/1/c/1/1c19996df638fe0bc8406530f63293be6a81ee9b.png)
AIME I 1 (December 2020). Quadratic polynomials







AIME I 11 (May/June 2020). Let


















![[asy]
defaultpen(linewidth(0.6)+fontsize(11));
size(8cm);
pair A,B,C,D,P,Q;
A=(0,0);
label("$A$", A, SW);
B=(6,15);
label("$B$", B, NW);
C=(30,15);
label("$C$", C, NE);
D=(24,0);
label("$D$", D, SE);
P=(5.2,2.6);
label("$P$", (5.8,2.6), N);
Q=(18.3,9.1);
label("$Q$", (18.1,9.7), W);
draw(A--B--C--D--cycle);
draw(C--A);
draw(Circle((10.95,7.45), 7.45));
dot(A^^B^^C^^D^^P^^Q);
[/asy]](http://latex.artofproblemsolving.com/9/4/7/9471215d85465568eba3e615c0538a62e755bcf8.png)
AIME II 5 (December 2019). Twenty distinct points are marked on a circle and labeled



AIME II 8 (April 2020). Find the number of positive integers






AIME II 11 (February 2020). Let







AIME II 15 (December 2019). Two externally tangent circles

















![[asy] import geometry; size(8cm); defaultpen(fontsize(11)); point O1=(0,0),O2=(15,0),B=9*dir(30); circle w1=circle(O1,9),w2=circle(O2,6),o=circle(O1,O2,B); point A=intersectionpoints(o,w2)[1],D=intersectionpoints(o,w2)[0],C=intersectionpoints(o,w1)[0]; filldraw(A--B--O1--C--D--O2--cycle,0.2*red+white,black); draw(w1); draw(w2); draw(O1--O2,dashed); draw(o); dot(O1); dot(O2); dot(A); dot(D); dot(C); dot(B); label("$\omega_1$",8*dir(110),SW); label("$\omega_2$",5*dir(70)+(15,0),SE); label("$O_1$",O1,W); label("$O_2$",O2,E); label("$B$",B,N+1/2*E); label("$A$",A,N+1/2*W); label("$C$",C,S+1/4*W); label("$D$",D,S+1/4*E); label("$15$",midpoint(O1--O2),N); label("$16$",midpoint(C--D),N); label("$2$",midpoint(A--B),S); label("$\Omega$",o.C+(o.r-1)*dir(270)); [/asy]](http://latex.artofproblemsolving.com/c/f/4/cf4366ae7bdff349332214d10a865c7d939d0960.png)
Overall, I'm quite happy with this group of problems

This post has been edited 1 time. Last edited by djmathman, Feb 18, 2022, 1:13 AM