Beautiful geometry

by m4thbl3nd3r, Apr 17, 2025, 4:41 PM

Let $\omega$ be the circumcircle of triangle $ABC$, $M$ is the midpoint of $BC$ and $E$ be the second intersection of $AM$ and $\omega$. Tangent line of $\omega$ at $E$ intersects $BC$ at $P$, let $PKL$ be a transversal of $\omega$ and $X,Y$ be intersections of $AK,AL$ with $BC$. Let $PF$ be a tangent line of $\omega$. Prove that $LYFP$ is cyclic

Inspired by pennypc123456789

by sqing, Apr 17, 2025, 4:10 PM

powers sums and triangular numbers

by gaussious, Apr 17, 2025, 1:00 PM

prove 1^k+2^k+3^k + \cdots + n^k \text{is divisible by } \frac{n(n+1)}{2} \text{when} k \text{is odd}

one cyclic formed by two cyclic

by CrazyInMath, Apr 13, 2025, 12:38 PM

Let $ABC$ be an acute triangle. Points $B, D, E$, and $C$ lie on a line in this order and satisfy $BD = DE = EC$. Let $M$ and $N$ be the midpoints of $AD$ and $AE$, respectively. Suppose triangle $ADE$ is acute, and let $H$ be its orthocentre. Points $P$ and $Q$ lie on lines $BM$ and $CN$, respectively, such that $D, H, M,$ and $P$ are concyclic and pairwise different, and $E, H, N,$ and $Q$ are concyclic and pairwise different. Prove that $P, Q, N,$ and $M$ are concyclic.

Easy Geometry Problem in Taiwan TST

by chengbilly, Mar 6, 2025, 5:05 AM

Suppose $I$ and $I_A$ are the incenter and the $A$-excenter of triangle $ABC$, respectively.
Let $M$ be the midpoint of arc $BAC$ on the circumcircle, and $D$ be the foot of the
perpendicular from $I_A$ to $BC$. The line $MI$ intersects the circumcircle again at $T$ . For
any point $X$ on the circumcircle of triangle $ABC$, let $XT$ intersect $BC$ at $Y$ . Prove
that $A, D, X, Y$ are concyclic.

this hAOpefully shoudn't BE weird

by popop614, Jul 17, 2024, 12:25 PM

Let $ABCDE$ be a convex pentagon such that $\angle ABC = \angle AED = 90^\circ$. Suppose that the midpoint of $CD$ is the circumcenter of triangle $ABE$. Let $O$ be the circumcenter of triangle $ACD$.

Prove that line $AO$ passes through the midpoint of segment $BE$.
This post has been edited 1 time. Last edited by popop614, Jul 17, 2024, 12:31 PM
Reason: bu h

Symmetric FE

by Phorphyrion, May 9, 2023, 6:56 PM

Find all functions $f:\mathbb{R}\to \mathbb{R}$ such that for all $x, y\in \mathbb{R}$ the following holds:
\[f(x)+f(y)=f(xy)+f(f(x)+f(y))\]

prove |a-b| is a square, given a-b=a^2c-b^2d

by Alpha314159, Mar 7, 2020, 2:19 AM

Let $a, b$ be integers such that there are consecutive integers $c,d$ satisfy $$a-b=a^2 c-b^2 d$$.
Prove : $|a-b|$ is a perfect square.

The Bank of Bath

by TelMarin, Jul 17, 2019, 12:18 PM

The Bank of Bath issues coins with an $H$ on one side and a $T$ on the other. Harry has $n$ of these coins arranged in a line from left to right. He repeatedly performs the following operation: if there are exactly $k>0$ coins showing $H$, then he turns over the $k$th coin from the left; otherwise, all coins show $T$ and he stops. For example, if $n=3$ the process starting with the configuration $THT$ would be $THT \to HHT  \to HTT \to TTT$, which stops after three operations.

(a) Show that, for each initial configuration, Harry stops after a finite number of operations.

(b) For each initial configuration $C$, let $L(C)$ be the number of operations before Harry stops. For example, $L(THT) = 3$ and $L(TTT) = 0$. Determine the average value of $L(C)$ over all $2^n$ possible initial configurations $C$.

Proposed by David Altizio, USA
This post has been edited 2 times. Last edited by djmathman, Jul 17, 2019, 12:26 PM

Diagonals BD,CE concurrent with diameter AO in cyclic ABCDE

by WakeUp, Feb 5, 2011, 2:56 PM

Let $ABCDE$ be a cyclic pentagon inscribed in a circle of centre $O$ which has angles $\angle B=120^{\circ},\angle C=120^{\circ},$ $\angle D=130^{\circ},\angle E=100^{\circ}$. Show that the diagonals $BD$ and $CE$ meet at a point belonging to the diameter $AO$.

Dinu Șerbănescu

A blog documenting a (no longer) high school youth and his struggles with advancing his mathematical skill.

avatar

djmathman
Archives
- April 2025
+ November 2024
+ November 2023
+ February 2023
+ November 2022
+ November 2020
+ July 2020
+ December 2019
+ October 2019
+ July 2019
+ April 2019
+ February 2019
+ October 2018
+ November 2017
+ October 2017
+ September 2017
+ June 2017
+ February 2015
+ January 2012
Shouts
Submit
  • dj so orz :omighty:

    by Yiyj1, Mar 29, 2025, 1:42 AM

  • legendary problem writer

    by Clew28, Jul 29, 2024, 7:20 PM

  • orz $$\,$$

    by balllightning37, Jul 26, 2024, 1:05 AM

  • hi dj $ $ $ $

    by OronSH, Jul 23, 2024, 2:14 AM

  • i wanna submit my own problems lol

    by ethanzhang1001, Jul 20, 2024, 9:54 PM

  • hi dj, may i have the role of contributer? :D

    by lpieleanu, Feb 23, 2024, 1:31 AM

  • This was helpful!

    by YIYI-JP, Nov 23, 2023, 12:42 PM

  • waiting for a recap of your amc proposals for this year :D

    by ihatemath123, Feb 17, 2023, 3:18 PM

  • also happy late bday man! i missed it by 2 days but hope you are enjoyed it

    by ab456, Dec 30, 2022, 10:58 AM

  • Contrib? :D

    by MC413551, Nov 20, 2022, 10:48 PM

  • :love: tfw kakuro appears on amc :love:

    by bissue, Aug 18, 2022, 4:32 PM

  • Hi dj :)

    by 799786, Aug 10, 2022, 1:44 AM

  • Roses are red,
    Wolfram is banned,
    The best problem writer is
    Djmathman

    by ihatemath123, Aug 6, 2022, 12:19 AM

  • hello :)

    by aidan0626, Jul 26, 2022, 5:49 PM

  • Do you have a link to your main blog that you started after graduating from high school, I couldn't find it. @dj I met you IRL at Awesome Math summer Program several years ago.

    by First, Mar 1, 2022, 5:18 PM

363 shouts
Tags
About Owner
  • Posts: 7938
  • Joined: Feb 23, 2011
Blog Stats
  • Blog created: Aug 5, 2011
  • Total entries: 567
  • Total visits: 485132
  • Total comments: 1520
Search Blog
a