geometry problem with many circumcircles

by Melid, Jun 1, 2025, 5:32 AM

In scalene triangle $ABC$, which doesn't have right angle, let $O$ be its circumcenter. Circle $BOC$ intersects $AB$ and $AC$ at $A_{1}$ and $A_{2}$ for the second time, respectively. Similarly, circle $COA$ intersects $BC$ and $BA$ at $B_{1}$ and $B_{2}$, and circle $AOB$ intersects $CA$ and $CB$ at $C_{1}$ and $C_{2}$ for the second time, respectively. Let $O_{1}$ and $O_{2}$ be circumcenters of triangle $A_{1}B_{1}C_{1}$ and $A_{2}B_{2}C_{2}$, respectively. Prove that $O, O_{1}, O_{2}$ are collinear.

Inspired by old results

by sqing, Jun 1, 2025, 2:55 AM

Let $ a,b> 0. $ Prove that
$$  \frac{a^3}{b^3+ab^2}+ \frac{4b^3}{a^3+b^3+2ab^2}\geq \frac{3}{2}$$$$\frac{a^3}{b^3+(a+b)^3}+ \frac{b^3}{a^3+(a+b)^3}+ \frac{(a+b)^2}{a^2+b^2+ab} \geq \frac{14}{9}$$
This post has been edited 1 time. Last edited by sqing, 3 hours ago

Interesting inequality

by sqing, May 31, 2025, 2:54 AM

2-var inequality

by sqing, May 27, 2025, 2:15 AM

weird conditions in geo

by Davdav1232, May 8, 2025, 8:24 PM

Let \( \triangle ABC \) be an isosceles triangle with \( AB = AC \). Let \( D \) be a point on \( AC \). Let \( L \) be a point inside the triangle such that \( \angle CLD = 90^\circ \) and
\[
CL \cdot BD = BL \cdot CD.
\]Prove that the circumcenter of triangle \( \triangle BDL \) lies on line \( AB \).

Quadruple isogonal conjugate inside cyclic quad

by Noob_at_math_69_level, Dec 18, 2023, 5:29 PM

Let $ABCD$ be a cyclic quadrilateral with $M_1,M_2,M_3,M_4$ being the midpoints of segments $AB,BC,CD,DA$ respectively. Suppose $E$ is the intersection of diagonals $AC,BD$ of quadrilateral $ABCD.$ Define $E_1$ to be the isogonal conjugate point of point $E$ in $\triangle{M_1CD}.$ Define $E_2,E_3,E_4$ similarly. Suppose $E_1E_3$ intersects $E_2E_4$ at a point $W.$ Prove that: The Newton-Gauss line of quadrilateral $ABCD$ bisects segment $EW.$

Proposed by 土偶 & Paramizo Dicrominique
This post has been edited 2 times. Last edited by Noob_at_math_69_level, Dec 18, 2023, 7:36 PM

Long FE with f(0)=0

by Fysty, May 23, 2021, 6:59 AM

Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ satisfying $f(0)=0$ and
$$f(f(x)+xf(y)+y)+xf(x+y)+f(y^2)=x+f(f(y))+(f(x)+y)(f(y)+x)$$for all $x,y\in\mathbb{R}$.

Rootiful sets

by InternetPerson10, Sep 22, 2020, 11:49 PM

We say that a set $S$ of integers is rootiful if, for any positive integer $n$ and any $a_0, a_1, \cdots, a_n \in S$, all integer roots of the polynomial $a_0+a_1x+\cdots+a_nx^n$ are also in $S$. Find all rootiful sets of integers that contain all numbers of the form $2^a - 2^b$ for positive integers $a$ and $b$.

Graph Theory

by achen29, Apr 24, 2018, 3:35 PM

Are there any good handouts or even books in Graph Theory for a beginner in it? Preferable handouts which are extensive!

Sum of whose elements is divisible by p

by nntrkien, Aug 8, 2004, 1:29 AM

Let $ p$ be an odd prime number. How many $ p$-element subsets $ A$ of $ \{1,2,\dots,2p\}$ are there, the sum of whose elements is divisible by $ p$?

A blog documenting a (no longer) high school youth and his struggles with advancing his mathematical skill.

avatar

djmathman
Archives
- April 2025
+ November 2024
+ November 2023
+ February 2023
+ November 2022
+ November 2020
+ July 2020
+ December 2019
+ October 2019
+ July 2019
+ April 2019
+ February 2019
+ October 2018
+ November 2017
+ October 2017
+ September 2017
+ June 2017
+ February 2015
+ January 2012
Shouts
Submit
  • whoaaaaaa you've used this blog for a while!

    by plum28, May 14, 2025, 6:36 PM

  • dj so orz :omighty:

    by Yiyj1, Mar 29, 2025, 1:42 AM

  • legendary problem writer

    by Clew28, Jul 29, 2024, 7:20 PM

  • orz $$\,$$

    by balllightning37, Jul 26, 2024, 1:05 AM

  • hi dj $ $ $ $

    by OronSH, Jul 23, 2024, 2:14 AM

  • i wanna submit my own problems lol

    by ethanzhang1001, Jul 20, 2024, 9:54 PM

  • hi dj, may i have the role of contributer? :D

    by lpieleanu, Feb 23, 2024, 1:31 AM

  • This was helpful!

    by YIYI-JP, Nov 23, 2023, 12:42 PM

  • waiting for a recap of your amc proposals for this year :D

    by ihatemath123, Feb 17, 2023, 3:18 PM

  • also happy late bday man! i missed it by 2 days but hope you are enjoyed it

    by ab456, Dec 30, 2022, 10:58 AM

  • Contrib? :D

    by MC413551, Nov 20, 2022, 10:48 PM

  • :love: tfw kakuro appears on amc :love:

    by bissue, Aug 18, 2022, 4:32 PM

  • Hi dj :)

    by 799786, Aug 10, 2022, 1:44 AM

  • Roses are red,
    Wolfram is banned,
    The best problem writer is
    Djmathman

    by ihatemath123, Aug 6, 2022, 12:19 AM

  • hello :)

    by aidan0626, Jul 26, 2022, 5:49 PM

364 shouts
Tags
About Owner
  • Posts: 7938
  • Joined: Feb 23, 2011
Blog Stats
  • Blog created: Aug 5, 2011
  • Total entries: 567
  • Total visits: 496040
  • Total comments: 1520
Search Blog
a