Inspired by Omerking

by sqing, Apr 16, 2025, 5:11 AM

Let $ a,b,c>0 $ and $  ab+bc+ca\geq \dfrac{1}{3}. $ Prove that
$$  ka+ b+kc\geq \sqrt{\frac{4k-1}{3}}$$Where $ k\geq 1.$$$  4a+ b+4c\geq \sqrt{5}$$
This post has been edited 1 time. Last edited by sqing, 2 hours ago

Interesting inequalities

by sqing, Apr 16, 2025, 3:36 AM

Let $ a,b,c\geq  0 $ and $  ab+bc+ca+abc=4$ . Prove that
$$k(a+b+c) -ab-bc\geq 4\sqrt{k(k+1)}-(k+4)$$Where $ k\geq \frac{16}{9}. $
$$ \frac{16}{9}(a+b+c) -ab-bc\geq  \frac{28}{9}$$
This post has been edited 1 time. Last edited by sqing, an hour ago

A Projection Theorem

by buratinogigle, Apr 16, 2025, 1:30 AM

In triangle $ABC$, prove that
\[ a = b\cos C + c\cos B. \]

Weird Inequality Problem

by Omerking, Apr 15, 2025, 8:56 AM

Following inequality is given:
$$3\geq ab+bc+ca\geq \dfrac{1}{3}$$Find the range of values that can be taken by :
$1)a+b+c$
$2)abc$

Where $a,b,c$ are positive reals.
This post has been edited 1 time. Last edited by Omerking, Yesterday at 9:18 AM

Turbo's en route to visit each cell of the board

by Lukaluce, Apr 14, 2025, 11:01 AM

Let $n > 1$ be an integer. In a configuration of an $n \times n$ board, each of the $n^2$ cells contains an arrow, either pointing up, down, left, or right. Given a starting configuration, Turbo the snail starts in one of the cells of the board and travels from cell to cell. In each move, Turbo moves one square unit in the direction indicated by the arrow in her cell (possibly leaving the board). After each move, the arrows in all of the cells rotate $90^{\circ}$ counterclockwise. We call a cell good if, starting from that cell, Turbo visits each cell of the board exactly once, without leaving the board, and returns to her initial cell at the end. Determine, in terms of $n$, the maximum number of good cells over all possible starting configurations.

Proposed by Melek Güngör, Turkey
This post has been edited 1 time. Last edited by Lukaluce, Monday at 11:54 AM

NEPAL TST 2025 DAY 2

by Tony_stark0094, Apr 12, 2025, 8:40 AM

Consider an acute triangle $\Delta ABC$. Let $D$ and $E$ be the feet of the altitudes from $A$ to $BC$ and from $B$ to $AC$ respectively.

Define $D_1$ and $D_2$ as the reflections of $D$ across lines $AB$ and $AC$, respectively. Let $\Gamma$ be the circumcircle of $\Delta AD_1D_2$. Denote by $P$ the second intersection of line $D_1B$ with $\Gamma$, and by $Q$ the intersection of ray $EB$ with $\Gamma$.

If $O$ is the circumcenter of $\Delta ABC$, prove that $O$, $D$, and $Q$ are collinear if and only if quadrilateral $BCQP$ can be inscribed within a circle.

$\textbf{Proposed by Kritesh Dhakal, Nepal.}$
This post has been edited 1 time. Last edited by Tony_stark0094, Apr 13, 2025, 12:37 AM
Reason: typo

NEPAL TST DAY 2 PROBLEM 2

by Tony_stark0094, Apr 12, 2025, 8:37 AM

Kritesh manages traffic on a $45 \times 45$ grid consisting of 2025 unit squares. Within each unit square is a car, facing either up, down, left, or right. If the square in front of a car in the direction it is facing is empty, it can choose to move forward. Each car wishes to exit the $45 \times 45$ grid.

Kritesh realizes that it may not always be possible for all the cars to leave the grid. Therefore, before the process begins, he will remove $k$ cars from the $45 \times 45$ grid in such a way that it becomes possible for all the remaining cars to eventually exit the grid.

What is the minimum value of $k$ that guarantees that Kritesh's job is possible?

$\textbf{Proposed by Shining Sun. USA}$
This post has been edited 2 times. Last edited by Tony_stark0094, Apr 13, 2025, 3:12 AM
Reason: typo

NEPAL TST DAY-2 PROBLEM 1

by Tony_stark0094, Apr 12, 2025, 8:34 AM

Let the sequence $\{a_n\}_{n \geq 1}$ be defined by
\[
a_1 = 1, \quad a_{n+1} = a_n + \frac{1}{\sqrt[2024]{a_n}} \quad \text{for } n \geq 1, \, n \in \mathbb{N}
\]Prove that
\[
a_n^{2025} >n^{2024}
\]for all positive integers $n \geq 2$.

$\textbf{Proposed by Prajit Adhikari, Nepal.}$
This post has been edited 1 time. Last edited by Tony_stark0094, Apr 13, 2025, 12:36 AM
Reason: typo

Perhaps a classic with parameter

by mihaig, Jan 7, 2025, 6:01 PM

Find the largest positive constant $r$ such that
$$a^2+b^2+c^2+d^2+2\left(abcd\right)^r\geq6$$for all reals $a\geq1\geq b\geq c\geq d\geq0$ satisfying $a+b+c+d=4.$

Constant Angle Sum

by i3435, May 11, 2021, 1:06 PM

Let $ABC$ be a triangle with circumcircle $\Omega$, $A$-angle bisector $l_A$, and $A$-median $m_A$. Suppose that $l_A$ meets $\overline{BC}$ at $D$ and meets $\Omega$ again at $M$. A line $l$ parallel to $\overline{BC}$ meets $l_A$, $m_A$ at $G$, $N$ respectively, so that $G$ is between $A$ and $D$. The circle with diameter $\overline{AG}$ meets $\Omega$ again at $J$.

As $l$ varies, show that $\angle AMN + \angle DJG$ is constant.

MP8148

A blog documenting a (no longer) high school youth and his struggles with advancing his mathematical skill.

avatar

djmathman
Archives
- April 2025
+ November 2024
+ November 2023
+ February 2023
+ November 2022
+ November 2020
+ July 2020
+ December 2019
+ October 2019
+ July 2019
+ April 2019
+ February 2019
+ October 2018
+ November 2017
+ October 2017
+ September 2017
+ June 2017
+ February 2015
+ January 2012
Shouts
Submit
  • dj so orz :omighty:

    by Yiyj1, Mar 29, 2025, 1:42 AM

  • legendary problem writer

    by Clew28, Jul 29, 2024, 7:20 PM

  • orz $$\,$$

    by balllightning37, Jul 26, 2024, 1:05 AM

  • hi dj $ $ $ $

    by OronSH, Jul 23, 2024, 2:14 AM

  • i wanna submit my own problems lol

    by ethanzhang1001, Jul 20, 2024, 9:54 PM

  • hi dj, may i have the role of contributer? :D

    by lpieleanu, Feb 23, 2024, 1:31 AM

  • This was helpful!

    by YIYI-JP, Nov 23, 2023, 12:42 PM

  • waiting for a recap of your amc proposals for this year :D

    by ihatemath123, Feb 17, 2023, 3:18 PM

  • also happy late bday man! i missed it by 2 days but hope you are enjoyed it

    by ab456, Dec 30, 2022, 10:58 AM

  • Contrib? :D

    by MC413551, Nov 20, 2022, 10:48 PM

  • :love: tfw kakuro appears on amc :love:

    by bissue, Aug 18, 2022, 4:32 PM

  • Hi dj :)

    by 799786, Aug 10, 2022, 1:44 AM

  • Roses are red,
    Wolfram is banned,
    The best problem writer is
    Djmathman

    by ihatemath123, Aug 6, 2022, 12:19 AM

  • hello :)

    by aidan0626, Jul 26, 2022, 5:49 PM

  • Do you have a link to your main blog that you started after graduating from high school, I couldn't find it. @dj I met you IRL at Awesome Math summer Program several years ago.

    by First, Mar 1, 2022, 5:18 PM

363 shouts
Tags
About Owner
  • Posts: 7938
  • Joined: Feb 23, 2011
Blog Stats
  • Blog created: Aug 5, 2011
  • Total entries: 567
  • Total visits: 484866
  • Total comments: 1520
Search Blog
a