2021 AMC B Proposals
by djmathman, Feb 11, 2021, 7:35 PM
altigeo strikes again :O
10B 5 (Summer 2018 - Summer 2019). The ages of Jonie’s four cousins are distinct single-digit positive integers. Two of the cousins’ ages multiplied together give
, while the other two multiply to
. What is the sum of the ages of Jonie’s four cousins?
10B 20/12B 15 (Spring 2019). The figure below is constructed from
line segments, each of which has length
. The area of pentagon
can be written as
, where
and
are positive integers. What is
?
![[asy]
pair A=(-2.4638,4.10658);
pair B=(-4,2.6567453480756127);
pair C=(-3.47132,0.6335248637894945);
pair D=(-1.464483379039766,0.6335248637894945);
pair E=(-0.956630463955801,2.6567453480756127);
pair F=(-2,2);
pair G=(-3,2);
draw(A--B--C--D--E--A);
draw(A--F--A--G);
draw(B--F--C);
draw(E--G--D);
label("$A$",A,N);
label("$B$",B,W);
label("$C$",C,SW);
label("$D$",D,SE);
label("$E$",E,dir(0));
dot(A^^B^^C^^D^^E^^F^^G);
[/asy]](//latex.artofproblemsolving.com/6/6/a/66a5b175cc51c8751f8a524f71a5c2f039868ec2.png)
12B 17 (Spring 2019). Let
be an isoceles trapezoid having parallel bases
and
with
Line segments from a point inside
to the vertices divide the trapezoid into four triangles whose areas are
and
starting with the triangle with base
and moving clockwise as shown in the diagram below. What is the ratio 
![[asy]unitsize(100);
pair A=(-1, 0), B=(1, 0), C=(0.3, 0.9), D=(-0.3, 0.9), P=(0.2, 0.5), E=(0.1, 0.75), F=(0.4, 0.5), G=(0.15, 0.2), H=(-0.3, 0.5);
draw(A--B--C--D--cycle, black);
draw(A--P, black);
draw(B--P, black);
draw(C--P, black);
draw(D--P, black);
label("$A$",A,(-1,0));
label("$B$",B,(1,0));
label("$C$",C,(1,-0));
label("$D$",D,(-1,0));
label("$2$",E,(0,0));
label("$3$",F,(0,0));
label("$4$",G,(0,0));
label("$5$",H,(0,0));
dot(A^^B^^C^^D^^P);
[/asy]](//latex.artofproblemsolving.com/8/d/a/8da767b461d070528eb6a05d45d906dc1d08a899.png)
12B 24 (Summer 2018). Let
be a parallelogram with area
. Points
and
are the projections of
and
respectively, onto the line
and points
and
are the projections of
and
respectively, onto the line
See the figure, which also shows the relative locations of these points.
![[asy]
size(350);
defaultpen(linewidth(0.8)+fontsize(11));
real theta = aTan(1.25/2);
pair A = 2.5*dir(180+theta), B = (3.35,0), C = -A, D = -B, P = foot(A,B,D), Q = -P, R = foot(B,A,C), S = -R;
draw(A--B--C--D--A^^B--D^^R--S^^rightanglemark(A,P,D,6)^^rightanglemark(C,Q,D,6));
draw(B--R^^C--Q^^A--P^^D--S,linetype("4 4"));
dot("$A$",A,dir(270));
dot("$B$",B,E);
dot("$C$",C,N);
dot("$D$",D,W);
dot("$P$",P,SE);
dot("$Q$",Q,NE);
dot("$R$",R,N);
dot("$S$",S,dir(270));
[/asy]](//latex.artofproblemsolving.com/1/4/6/146f1376f1f3d196ea8f9f85dbc4decfcac840b9.png)
Suppose
and
and let
denote the length of
the longer diagonal of
Then
can be written in the form
where
and
are positive integers and
is not divisible by the square of any prime. What is 
. This batch was probably my strongest yet.
10B 5 (Summer 2018 - Summer 2019). The ages of Jonie’s four cousins are distinct single-digit positive integers. Two of the cousins’ ages multiplied together give


10B 20/12B 15 (Spring 2019). The figure below is constructed from







![[asy]
pair A=(-2.4638,4.10658);
pair B=(-4,2.6567453480756127);
pair C=(-3.47132,0.6335248637894945);
pair D=(-1.464483379039766,0.6335248637894945);
pair E=(-0.956630463955801,2.6567453480756127);
pair F=(-2,2);
pair G=(-3,2);
draw(A--B--C--D--E--A);
draw(A--F--A--G);
draw(B--F--C);
draw(E--G--D);
label("$A$",A,N);
label("$B$",B,W);
label("$C$",C,SW);
label("$D$",D,SE);
label("$E$",E,dir(0));
dot(A^^B^^C^^D^^E^^F^^G);
[/asy]](http://latex.artofproblemsolving.com/6/6/a/66a5b175cc51c8751f8a524f71a5c2f039868ec2.png)
12B 17 (Spring 2019). Let









![[asy]unitsize(100);
pair A=(-1, 0), B=(1, 0), C=(0.3, 0.9), D=(-0.3, 0.9), P=(0.2, 0.5), E=(0.1, 0.75), F=(0.4, 0.5), G=(0.15, 0.2), H=(-0.3, 0.5);
draw(A--B--C--D--cycle, black);
draw(A--P, black);
draw(B--P, black);
draw(C--P, black);
draw(D--P, black);
label("$A$",A,(-1,0));
label("$B$",B,(1,0));
label("$C$",C,(1,-0));
label("$D$",D,(-1,0));
label("$2$",E,(0,0));
label("$3$",F,(0,0));
label("$4$",G,(0,0));
label("$5$",H,(0,0));
dot(A^^B^^C^^D^^P);
[/asy]](http://latex.artofproblemsolving.com/8/d/a/8da767b461d070528eb6a05d45d906dc1d08a899.png)
12B 24 (Summer 2018). Let












![[asy]
size(350);
defaultpen(linewidth(0.8)+fontsize(11));
real theta = aTan(1.25/2);
pair A = 2.5*dir(180+theta), B = (3.35,0), C = -A, D = -B, P = foot(A,B,D), Q = -P, R = foot(B,A,C), S = -R;
draw(A--B--C--D--A^^B--D^^R--S^^rightanglemark(A,P,D,6)^^rightanglemark(C,Q,D,6));
draw(B--R^^C--Q^^A--P^^D--S,linetype("4 4"));
dot("$A$",A,dir(270));
dot("$B$",B,E);
dot("$C$",C,N);
dot("$D$",D,W);
dot("$P$",P,SE);
dot("$Q$",Q,NE);
dot("$R$",R,N);
dot("$S$",S,dir(270));
[/asy]](http://latex.artofproblemsolving.com/1/4/6/146f1376f1f3d196ea8f9f85dbc4decfcac840b9.png)
Suppose












This post has been edited 5 times. Last edited by djmathman, Feb 11, 2021, 11:35 PM