Maximum number of nice subsets

by FireBreathers, Apr 23, 2025, 10:27 PM

Given a set $M$ of natural numbers with $n$ elements with $n$ odd number. A nonempty subset $S$ of $M$ is called $nice$ if the product of the elements of $S$ divisible by the sum of the elements of $M$, but not by its square. It is known that the set $M$ itself is good. Determine the maximum number of $nice$ subsets (including $M$ itself).

Polynomial

by Z_., Apr 23, 2025, 9:21 PM

Let \( m \) be an integer greater than zero. Then, the value of the sum of the reciprocals of the cubes of the roots of the equation
\[
mx^4 + 8x^3 - 139x^2 - 18x + 9 = 0
\]is equal to:
This post has been edited 1 time. Last edited by Z_., 2 hours ago
Reason: .

Inequalities

by Scientist10, Apr 23, 2025, 6:36 PM

If $x, y, z \in \mathbb{R}$, then prove that the following inequality holds:
\[
\sum_{\text{cyc}} \sqrt{1 + \left(x\sqrt{1 + y^2} + y\sqrt{1 + x^2}\right)^2} \geq \sum_{\text{cyc}} xy + 2\sum_{\text{cyc}} x
\]

interesting function equation (fe) in IR

by skellyrah, Apr 23, 2025, 9:51 AM

Tangents forms triangle with two times less area

by NO_SQUARES, Apr 23, 2025, 9:08 AM

Let $DEF$ be triangle, inscribed in parabola. Tangents in points $D,E,F$ forms triangle $ABC$. Prove that $S_{DEF}=2S_{ABC}$. ($S_T$ is area of triangle $T$).
From F.S.Macaulay's book «Geometrical Conics», suggested by M. Panov
Attachments:

Existence of perfect squares

by egxa, Apr 18, 2025, 9:48 AM

Find all natural numbers \(n\) for which there exists an even natural number \(a\) such that the number
\[
(a - 1)(a^2 - 1)\cdots(a^n - 1)
\]is a perfect square.

FE solution too simple?

by Yiyj1, Apr 9, 2025, 3:26 AM

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that the equality $$f(f(x)+y) = f(x^2-y)+4f(x)y$$holds for all pairs of real numbers $(x,y)$.

My solution

I feel like my solution is too simple. Is there something I did wrong or something I missed?

2024 AMC Proposals

by djmathman, Nov 13, 2024, 11:17 PM

Four proposals this time. One great, three OK.

12A 12/10A 19. The first three terms of a geometric sequence are the integers $a,\,720,$ and $b,$ where $a<720<b.$ What is the sum of the digits of the least possible value of $b?$

Comments

10A 22. Let $\mathcal K$ be the kite formed by joining two right triangles with legs $1$ and $\sqrt3$ along a common hypotenuse. Eight copies of $\mathcal K$ are used to form the polygon shown below. What is the area of triangle $\triangle ABC$?
https://cdn.artofproblemsolving.com/attachments/1/3/03abbd4df2932f4a1d16a34c2b9e15b683dedb.png
Comments

10A 25/12A 22. The figure below shows a dotted grid $8$ cells wide and $3$ cells tall consisting of $1''\times1''$ squares. Carl places $1$-inch toothpicks along some of the sides of the squares to create a closed loop that does not intersect itself. The numbers in the cells indicate the number of sides of that square that are to be covered by toothpicks, and any number of toothpicks are allowed if no number is written. In how many ways can Carl place the toothpicks? [asy] size(6cm); for (int i=0; i<9; ++i) { draw((i,0)--(i,3),dotted); } for (int i=0; i<4; ++i){ draw((0,i)--(8,i),dotted); } for (int i=0; i<8; ++i) { for (int j=0; j<3; ++j) { if (j==1) { label("1",(i+0.5,1.5)); }}} [/asy] $\textbf{(A) }130\qquad\textbf{(B) }144\qquad\textbf{(C) }146\qquad\textbf{(D) }162\qquad\textbf{(E) }196$

Comments

12B 19. Equilateral $\triangle ABC$ with side length $14$ is rotated about its center by angle $\theta$, where $0 < \theta < 60^{\circ}$, to form $\triangle DEF$. See the figure. The area of hexagon $ADBECF$ is $91\sqrt{3}$. What is $\tan\theta$?
[asy]
defaultpen(fontsize(13)); size(170);
pair O=(0,0),A=dir(225),B=dir(-15),C=dir(105),D=rotate(38.21,O)*A,E=rotate(38.21,O)*B,F=rotate(38.21,O)*C;
draw(A--B--C--A,gray+0.4);draw(D--E--F--D,gray+0.4); draw(A--D--B--E--C--F--A,black+0.9); dot(O); dot("$A$",A,dir(A)); dot("$B$",B,dir(B)); dot("$C$",C,dir(C)); dot("$D$",D,dir(D)); dot("$E$",E,dir(E)); dot("$F$",F,dir(F));
[/asy]
Comments
This post has been edited 2 times. Last edited by djmathman, Nov 13, 2024, 11:19 PM

Number Theory

by fasttrust_12-mn, Aug 16, 2024, 10:21 AM

Find all integers $n$ for which $n^7-41$ is the square of an integer

2023 AMC Proposals

by djmathman, Nov 15, 2023, 6:52 PM

I had quite a few this year! Most of them were on the easy end, though. That's part of the natural progression of things, I guess; I've been less interested in making hard problems and more focused on the easier end of the exam. Though this year it looks like the problems on the hard end were not great; I have some thoughts about a few of them....
12A 6 (March 2023). Points $A$ and $B$ lie on the graph of $y=\log_{2}x$. The midpoint of $\overline{AB}$ is $(6, 2)$. What is the positive difference between the $x$-coordinates of $A$ and $B$?

10A 12 (March 2023). How many three-digit positive integers $N$ satisfy the following properties?
  • The number $N$ is divisible by $7$.
  • The number formed by reversing the digits of $N$ is divisible by $5$.

12A 16 (March 2023). Consider the set of complex numbers $z$ satisfying $|1+z+z^{2}|=4$. The maximum value of the imaginary part of $z$ can be written in the form $\tfrac{\sqrt{m}}{n}$, where $m$ and $n$ are relatively prime positive integers. What is $m+n$?

10B 1/12B 1 (March 2023). A mom is pouring orange juice for her 4 kids into 4 identical glasses. She fills the first 3 full, but only fills one third of the glass for the last one. How much does she need to pour from the 3 full glasses to fill all of the glasses to an equal amount?

10B 5 (March 2023?). Maddy and Lara see a list of numbers written on a blackboard. Maddy adds $3$ to each number in the list and finds that the sum of her new numbers is $45$. Lara multiplies each number in the list by $3$ and finds that the sum of her new numbers is also $45$. How many numbers are written on the blackboard?

10B 7 (March 2023). Square $ABCD$ is rotated $20^\circ$ clockwise about its center to obtain square $EFGH$, as shown below. What is the degree measure of $\angle EAB$?
[asy] size(170); defaultpen(linewidth(0.6)); real r = 25; draw(dir(135)--dir(45)--dir(315)--dir(225)--cycle); draw(dir(135-r)--dir(45-r)--dir(315-r)--dir(225-r)--cycle); label("$A$",dir(135),NW); label("$B$",dir(45),NE); label("$C$",dir(315),SE); label("$D$",dir(225),SW); label("$E$",dir(135-r),N); label("$F$",dir(45-r),E); label("$G$",dir(315-r),S); label("$H$",dir(225-r),W); [/asy]

12B 12 (December 2020). For complex numbers $w=a+bi$ and $z=c+di$, define the binary operation $\otimes$ by \[w\otimes z=ac+bd\,i.\]Suppose $z$ is a complex number such that $z\otimes z=z^{2}+40$. What is $|z|$?
You'll notice a lot of March 2023 problems here. Some of you may also remember that I wrote the following last year:
Quote:
In any case, that'll be it for a while. As I mentioned before, I didn't submit anything for the 2023-2024 series of contests, so you probably won't see any dj problems there. I probably won't be completely dead, but I certainly don't feel the same passion and fire for problem construction as I used to. (Right now, I'm more focused on improving my mental well-being anyway.) :)
It turns out that right before the AMC constructor meetings last year I had a sudden interest in constructing some problems for the test. The AMC heads requested some complex numbers and logarithm problems, so I focused my efforts on those, with a few extra problems thrown in there for good measure. This was the result of about two weeks' worth of thought, putting research to the side for a bit. There's nothing super flashy here, but I'm decently happy with this set. Favorite is almost certainly 12A #16, though 10B #7 is up there as one of my favorites, too.
This post has been edited 1 time. Last edited by djmathman, Nov 15, 2023, 6:55 PM

Floor double summation

by CyclicISLscelesTrapezoid, Jul 12, 2022, 12:52 PM

IMO 2014 Problem 4

by ipaper, Jul 9, 2014, 11:38 AM

Let $P$ and $Q$ be on segment $BC$ of an acute triangle $ABC$ such that $\angle PAB=\angle BCA$ and $\angle CAQ=\angle ABC$. Let $M$ and $N$ be the points on $AP$ and $AQ$, respectively, such that $P$ is the midpoint of $AM$ and $Q$ is the midpoint of $AN$. Prove that the intersection of $BM$ and $CN$ is on the circumference of triangle $ABC$.

Proposed by Giorgi Arabidze, Georgia.

A blog documenting a (no longer) high school youth and his struggles with advancing his mathematical skill.

avatar

djmathman
Archives
- April 2025
+ November 2024
+ November 2023
+ February 2023
+ November 2022
+ November 2020
+ July 2020
+ December 2019
+ October 2019
+ July 2019
+ April 2019
+ February 2019
+ October 2018
+ November 2017
+ October 2017
+ September 2017
+ June 2017
+ February 2015
+ January 2012
Shouts
Submit
  • dj so orz :omighty:

    by Yiyj1, Mar 29, 2025, 1:42 AM

  • legendary problem writer

    by Clew28, Jul 29, 2024, 7:20 PM

  • orz $$\,$$

    by balllightning37, Jul 26, 2024, 1:05 AM

  • hi dj $ $ $ $

    by OronSH, Jul 23, 2024, 2:14 AM

  • i wanna submit my own problems lol

    by ethanzhang1001, Jul 20, 2024, 9:54 PM

  • hi dj, may i have the role of contributer? :D

    by lpieleanu, Feb 23, 2024, 1:31 AM

  • This was helpful!

    by YIYI-JP, Nov 23, 2023, 12:42 PM

  • waiting for a recap of your amc proposals for this year :D

    by ihatemath123, Feb 17, 2023, 3:18 PM

  • also happy late bday man! i missed it by 2 days but hope you are enjoyed it

    by ab456, Dec 30, 2022, 10:58 AM

  • Contrib? :D

    by MC413551, Nov 20, 2022, 10:48 PM

  • :love: tfw kakuro appears on amc :love:

    by bissue, Aug 18, 2022, 4:32 PM

  • Hi dj :)

    by 799786, Aug 10, 2022, 1:44 AM

  • Roses are red,
    Wolfram is banned,
    The best problem writer is
    Djmathman

    by ihatemath123, Aug 6, 2022, 12:19 AM

  • hello :)

    by aidan0626, Jul 26, 2022, 5:49 PM

  • Do you have a link to your main blog that you started after graduating from high school, I couldn't find it. @dj I met you IRL at Awesome Math summer Program several years ago.

    by First, Mar 1, 2022, 5:18 PM

363 shouts
Tags
About Owner
  • Posts: 7938
  • Joined: Feb 23, 2011
Blog Stats
  • Blog created: Aug 5, 2011
  • Total entries: 567
  • Total visits: 486135
  • Total comments: 1520
Search Blog
a